Mathematics
Course Description
Level: Second Level Degree
Degree Class:
LM-40 R - Content in Italian
Matematica
Department: MATHEMATICS
Admission: Free
CFUs: 120
Duration: 2 years
Website: https://www.dm.unipi.it/didattica/laurea-magistrale/
English Italian
Pisa
- Application
- Education
- General
- Modelling
- Theoretical
Per l'ammissione al corso di Laurea Magistrale in Matematica è richiesto il possesso di laurea o di diploma universitario di durata almeno triennale, o di altro titolo di studio conseguito all'estero e riconosciuto idoneo, e degli specifici requisiti curriculari confermanti il possesso di sufficienti conoscenze di base di Matematica e della lingua
inglese, e descritti nel Regolamento Didattico del corso di laurea magistrale.
Più precisamente, per poter fare domanda d'iscrizione alla laurea magistrale in Matematica, uno studente deve soddisfare uno dei seguenti requisiti:
a) possedere una laurea triennale nella classe L-35 (Scienze Matematiche) o una laurea triennale ex lege 509/99 nella classe 32 (Scienze Matematiche);
b) possedere una laurea triennale di un'altra classe avendo acquisito almeno 30 CFU in settori MAT/*;
c) possedere una laurea specialistica non nella classe 45/S, o una laurea magistrale non nella classe LM-40, avendo acquisito almeno 30 CFU in settori MAT/*;
d) possedere un diploma triennale o una laurea quadriennale in Matematica, Fisica, o Informatica;
e) possedere un titolo di studio acquisito all'estero riconosciuto idoneo dal Consiglio di Corso di Studi.
E' inoltre richiesta la conoscenza della lingua inglese, corrispondente a un livello B1 o superiore. Agli studenti che possiedono una conoscenza di livello B1 verrà richiesto di inserire nel proprio piano di studi ulteriori crediti di lingua inglese al fine di raggiungere un livello pari a B2.
Sarà altresì effettuata una verifica della preparazione dello studente basata su un esame del curriculum pregresso e su un eventuale colloquio orale, con modalità dettagliate nel Regolamento Didattico del corso di laurea magistrale. Tenendo conto delle specificità della preparazione iniziale, secondo modalità previste nel Regolamento Didattico del corso di laurea magistrale, l'ammissione potrà essere subordinata alla scelta da parte dello studente di un piano di studio, concordato con il Consiglio del Corso, che comunque dovrà essere conforme all'Ordinamento Didattico.
Il Consiglio di Corso di Studio, tramite la Commissione Carriere, effettua una verifica della personale preparazione degli studenti in possesso dei requisiti curriculari che presentano domanda d'iscrizione. Tale verifica, che deve concludersi entro un mese dal ricevimento della domanda d'iscrizione, si basa sul curriculum pregresso dello studente (integrato se necessario con i programmi dei corsi seguiti) ed eventualmente su un colloquio orale, e può avere uno dei seguenti esiti: non accettazione motivata della domanda d'iscrizione, con l'indicazione di modalità suggerite per l'acquisizione dei requisiti mancanti; iscrizione incondizionata alla laurea magistrale in Matematica; iscrizione alla laurea magistrale condizionata all'accettazione di specifiche prescrizioni. Le prescrizioni vengono valutate in base al curriculum pregresso e consistono in un elenco di attività formative che devono necessariamente essere presenti nel piano di studi dello studente. In quest'ultimo caso, lo studente deve firmare l'accettazione esplicita delle prescrizioni; in alternativa, può rinunciare all'iscrizione. È comunque garantita l'iscrizione (eventualmente con prescrizioni) agli studenti in possesso di una laurea triennale della classe L-35 (Scienze matematiche), o di una laurea triennale ex lege 509/99 nella classe 32 (Scienze Matematiche). Per quanto riguarda la lingua inglese, gli studenti che non hanno un livello B2 in ingresso dovranno certificare di aver conseguito almeno un livello B2 prima di potersi laureare.
Per gli studenti in possesso di una laurea triennale in Matematica (classe L-35) conseguita presso l'Università di Pisa, è prescritto l'obbligo di sostenere, tra il corso di laurea triennale e quello magistrale, i seguenti esami:
- per gli studenti che optano per un curriculum diverso da quello Applicativo, tre esami tra: Elementi di teoria degli insiemi, Algebra 2, Analisi matematica 3, Probabilità, Geometria e topologia differenziale;
- per gli studenti che optano per il curriculum Applicativo, tre tra gli esami sopra elencati, con l'aggiunta di Calcolo scientifico.
Per gli studenti in possesso di una laurea triennale in Matematica (classe L-35) conseguita presso l'Università di Pisa che optano per il curriculum Teorico, è prescritto l'obbligo di sostenere, tra il corso di laurea triennale e quello magistrale, almeno un esame MAT/01.
Informazioni aggiuntive.
Gli insegnamenti sono impartiti in lingua inglese o italiana previo accordo tra il docente e gli studenti frequentanti.
Sono impartiti di norma in italiano gli insegnamenti legati alla legislazione e all'ordinamento scolastico italiani e alla storia della matematica, in particolare i corsi del settore MATH-01/B. Lo studente potrà in ogni caso sostenere qualunque esame in lingua inglese. Ove possibile, i materiali didattici saranno resi disponibili in inglese.
Ogni studente presenta un piano di studio con le attività formative che ha già svolto e quelle che intende svolgere per acquisire i 120 crediti necessari per la LM. La presentazione del piano di studi deve avvenire di norma entro il 30 novembre del primo anno, oppure entro un mese dall'iscrizione al corso di LM. La presentazione avviene usando la piattaforma CAPS (caps.dm.unipi.it). Il piano di studio deve contenere l'indicazione del curriculum (scelto tra Applicativo, Didattico, Generale, Modellistico e Teorico) e precisare le attività formative scelte come moduli caratterizzanti e come attività a scelta dello studente. Negli anni successivi al primo lo studente presenta il piano di studi solo se desidera modificare quello già approvato. Il piano di studio deve soddisfare le eventuali prescrizioni stabilite nel momento dell'iscrizione al corso di studi.
Gli studenti che, senza comprovati motivi, non presentano il proprio piano di studio nei termini stabiliti non sono ammessi a sostenere gli esami nella prima sessione utile successiva alla data in cui la presentazione era dovuta.
La Commissione Carriere, presieduta dal Presidente del Consiglio di Corso di Studio esamina, di norma entro 45 giorni dalla presentazione, i piani di studio presentati, e decide se approvarli o meno. L'approvazione viene poi ratificata dal Consiglio di Corso di Studio. In caso di mancata approvazione, la Commissione Carriere concorda con lo studente le modifiche necessarie, in modo da giungere a un'approvazione definitiva di norma entro 60 giorni dalla presentazione. Una parte dei crediti necessari per il conseguimento della laurea magistrale può essere acquisita, a seguito di accordi o convenzioni, presso altre università o centri di ricerca (pubblici o privati), italiani o stranieri, e in particolare tramite programmi Erasmus/Socrates. È necessaria l'approvazione preventiva da parte del Consiglio di Corso di LM di un programma descrivente le attività previste. Sarà, inoltre, compito del Consiglio di Corso di LM quantificare in crediti, in modo congruo con la durata del periodo e prima dell'inizio del progetto, l'attività svolta dallo studente nell'ente esterno.
La frequenza alle varie attività formative non è obbligatoria ma è caldamente raccomandata. Almeno 15 giorni prima dell'inizio di ogni anno accademico, i docenti responsabili delle varie attività formative devono pubblicare i programmi provvisori con le modalità telematiche previste dall'ateneo. Questi programmi devono indicare, oltre al contenuto dell'attività, i testi consigliati, le modalità di verifica del profitto e le propedeuticità raccomandate. La versione definitiva dei programmi delle attività formative sarà consultabile via web.
Relativamente al curriculum Didattico si specifica che gli studenti che all'interno del Gruppo IstAppTeor scelgono una Istituzione di ambito formazione teorica avanzata (Algebra, Analisi, Geometria) devono comunque prevedere nel piano di studi almeno un esame di uno dei seguenti settori: MATH-03/B, MATH-04/A, MATH-05/A, MATH-06/A.
Course Evaluations
Study Plan
For students enrolled in the academic year 2025/2026
Applicativo
Required
- Istituzioni di analisi numerica (11 CFU) - Secondo ciclo semestrale
- Istituzioni di fisica matematica (11 CFU) - Primo ciclo semestrale
Modaffint - i anno (6 CFU)
- Holomorphic functions and analytic sets (6 CFU)
- Complex analysis and geometry (6 CFU)
- Introduction to computational statistics (6 CFU)
- Laboratory for automatic verification of proofs (6 CFU)
- D-modules (6 CFU)
- Representation theory a (6 CFU) - Primo ciclo semestrale
- Pluripotential theory and positive currents (6 CFU)
- Rough paths analysis (6 CFU)
- Analysis on gaussian spaces (6 CFU)
- Mathematical aspects of reinforcement learning (6 CFU)
- Introduction to stochastic pdes (6 CFU)
- Stochastic optimization (6 CFU)
- Deep learning theory (6 CFU)
- Elements of representation theory (6 CFU) - Secondo ciclo semestrale
- Nonlinear optimization (6 CFU) - Primo ciclo semestrale
- Categories in geometry (6 CFU)
- Complements of rational mechanics (6 CFU) - Secondo ciclo semestrale
- Complex algebraic geometry (6 CFU) - Secondo ciclo semestrale
- Toric geometry (6 CFU)
- Galois groups and fundamental groups (6 CFU) - Primo ciclo semestrale
- Mathematical methods of quantum mechanics (6 CFU) - Secondo ciclo semestrale
- Numerical methods for model order reduction (6 CFU)
- Numerical methods for inverse problems (6 CFU) - Primo ciclo semestrale
- Numerical methods for matrix functions (6 CFU)
- Mathematical models and their numerical simulation (6 CFU)
- Numerical methods for markov chains and complex networks (6 CFU)
- Numerical methods for optimal control (6 CFU) - Secondo ciclo semestrale
- Tensor numerical methods (6 CFU) - Secondo ciclo semestrale
- Randomized algorithms for numerical linear algebra (6 CFU) - Primo ciclo semestrale
- Random dynamical systems (6 CFU) - Secondo ciclo semestrale
- Algebraic surfaces (6 CFU)
- Riemann surfaces and algebraic curves (6 CFU) - Secondo ciclo semestrale
- Scheme theory (6 CFU)
- Abelian varieties (6 CFU)
- Higher-dimensional algebraic varieties (5 CFU)
- Introduction to quantum mechanics (6 CFU)
- Algebra 1 (6 CFU)
- Algebra 2 (6 CFU) - Secondo ciclo semestrale
- Algorithms and data structures (6 CFU) - Secondo ciclo semestrale
- Scientific computing (6 CFU) - Primo ciclo semestrale
- Elements of computational algebra (6 CFU)
- Elements of complex analysis (6 CFU) - Secondo ciclo semestrale
- Elements of calculus of variations (6 CFU)
- Elements of algebraic geometry (6 CFU) - Primo ciclo semestrale
- Elements of mathematical logic (6 CFU)
- Elements of celestial mechanics (6 CFU) - Secondo ciclo semestrale
- Elements of probability and statistics (6 CFU) - Secondo ciclo semestrale
- Elements of set theory (6 CFU) - Secondo ciclo semestrale
- Elements of algebraic topology (6 CFU) - Primo ciclo semestrale
- Introduction to differential geometry and topology (6 CFU) - Primo ciclo semestrale
- Mathematical logic (6 CFU) - Secondo ciclo semestrale
- Elementary mathematics from an advanced standpoint: arithmetic (6 CFU)
- Elementary mathematics from an advanced standpoint: geometry (6 CFU) - Primo ciclo semestrale
- Numerical methods for ordinary differential equations (6 CFU) - Secondo ciclo semestrale
- Topological methods in the global analysis (6 CFU)
- Probability (6 CFU) - Primo ciclo semestrale
- Operations research (6 CFU) - Secondo ciclo semestrale
- Dynamical systems (6 CFU) - Primo ciclo semestrale
- Mathematical statistics (6 CFU) - Secondo ciclo semestrale
- History of mathematics (6 CFU)
- Algebraic number theory 1 (6 CFU) - Secondo ciclo semestrale
- Field and galois theories (6 CFU)
- Coding theory and cryptography (6 CFU)
- Elementary number theory (6 CFU)
- Commutative algebra and algebraic computational geometry (6 CFU)
- Computational algebra a (6 CFU)
- Computational algebra b (6 CFU)
- Linear and multilinear algebra (6 CFU)
- Homological algebra (6 CFU)
- Higher algebra a (6 CFU) - Secondo ciclo semestrale
- Higher algebra b (6 CFU)
- Lie algebras and lie groups (6 CFU)
- Harmonic analysis (6 CFU) - Primo ciclo semestrale
- Convex analysis (6 CFU)
- Microlocal analysis (6 CFU)
- Non linear analysis (6 CFU)
- Variations calculus a (6 CFU)
- Variations calculus b (6 CFU)
- Cyclotomic fields (6 CFU)
- Functional analysis (6 CFU) - Primo ciclo semestrale
- Orbital determination (6 CFU)
- Hyperbolic dynamics (6 CFU) - Primo ciclo semestrale
- Holomorphic dynamics (6 CFU) - Primo ciclo semestrale
- Ordinary differential equations (6 CFU)
- Elliptic equations (6 CFU)
- Financial mathematics (6 CFU)
- Mathematical physics (6 CFU) - Secondo ciclo semestrale
- Principles of mathematics (6 CFU)
- Modular forms (6 CFU)
- Special functions (6 CFU)
- Geometry of metric spaces (6 CFU)
- Contact geometry (6 CFU)
- Complex differential geometry (6 CFU) - Secondo ciclo semestrale
- Geometry and topology of surfaces (6 CFU)
- Hyperbolic geometry (6 CFU) - Primo ciclo semestrale
- Real geometry a (6 CFU)
- Real geometry b (6 CFU)
- Real geometry c (6 CFU)
- Computational real geometry (6 CFU)
- Riemannian geometry (6 CFU) - Primo ciclo semestrale
- Symplectic geometry (6 CFU)
- Coxeter groups (6 CFU)
- Introduction to p-adic analysis (6 CFU)
- Discrete mathematics (6 CFU)
- Mathematics and music (6 CFU)
- Celestial mechanics (6 CFU)
- Continuous mechanics (6 CFU)
- Space mechanics (6 CFU)
- Higher mechanics (6 CFU) - Secondo ciclo semestrale
- Mathematical methods in cryptography (6 CFU)
- Numerical methods for graphics. (6 CFU)
- Topological methods for differential equations (6 CFU)
- Linear and nonlinear waves (6 CFU)
- Differential operators and index theorems (6 CFU)
- Origins and development of modern mathematics (6 CFU)
- Problem solving (6 CFU)
- Evolution problems (6 CFU)
- Discrete dynamical systems (6 CFU)
- Functional spaces (6 CFU)
- Symmetric spaces (6 CFU)
- History of ancient mathematics and its tradition (6 CFU)
- Minimal surfaces (6 CFU)
- Technologies for education (6 CFU)
- Algebraic number theory 2 (6 CFU)
- Analytic number theory a (6 CFU)
- Analytic number theory b (6 CFU)
- Coding theory (6 CFU)
- Automated control theory (6 CFU)
- Game theory (6 CFU) - Secondo ciclo semestrale
- Group theory (6 CFU)
- Model theory (6 CFU)
- Semigroup theory (6 CFU)
- Optimal control theory (6 CFU)
- Computability theory (6 CFU)
- Proof theory (6 CFU)
- Measure theory (6 CFU) - Primo ciclo semestrale
- Category theory (6 CFU) - Secondo ciclo semestrale
- Functions theory (6 CFU)
- Descriptive complexity theory (6 CFU)
- Ergodic theory (6 CFU)
- Geometric measure theory (6 CFU)
- Differential topology (6 CFU)
- Low-dimensional topology and geometry (6 CFU) - Secondo ciclo semestrale
- General topology (6 CFU)
- Ultrafilters and nonstandard methods (6 CFU)
- 2-manifolds (6 CFU)
- 3-manifolds (6 CFU)
- 4-manifolds (6 CFU)
- Physics III (6 CFU) - Secondo ciclo semestrale
- Physics lab for teaching (6 CFU)
- Calculation of elements in homogeneous groups (6 CFU) - Secondo ciclo semestrale
- Didactics of mathematics and new technologies (6 CFU) - Secondo ciclo semestrale
- Partial differential equations (6 CFU) - Secondo ciclo semestrale
- Mathematical analysis 3 (6 CFU) - Primo ciclo semestrale
- Geometric analysis (6 CFU)
- Analysis in metric spaces (6 CFU)
- Non-standard analysis (6 CFU)
- Real analysis (6 CFU)
- Nonlinear capacity, variational inequalities and applications (6 CFU)
- Partial differential equations 2 (6 CFU)
- Equations of fluid mechanics (6 CFU)
- Stochastic differential equations and applications (6 CFU)
- Hyperbolic equations (6 CFU)
- Parabolic equations (6 CFU)
- Mathematical models in biomedicine and mathematical physics (6 CFU) - Secondo ciclo semestrale
- Advanced probability (6 CFU)
- Rational mechanics (6 CFU) - Secondo ciclo semestrale
- Dynamics of the solar system (6 CFU) - Secondo ciclo semestrale
- Relativistic mechanics (6 CFU)
- Complements of mathematics education (6 CFU)
- Introduction to geometric measure theory (6 CFU)
- Operational research and communication and transport nets (6 CFU)
- Problems and methods in mathematics education research (6 CFU)
- Problems and methods in history of mathematics (6 CFU)
- Noncommutative algebra (6 CFU)
- Data analysis (6 CFU) - Secondo ciclo semestrale
- Applications of fluid dynamics in biomedicine (6 CFU)
- Applications of differential equations in biomedicine (6 CFU)
- Étale cohomology (6 CFU)
- Post-quantum cryptography (6 CFU)
- Elliptic curves (6 CFU)
- Linear algebraic groups (6 CFU)
- Algebraic number theory 3 (6 CFU)
- Knot theory a (6 CFU)
- Knot theory b (6 CFU)
- Algebraic topology b (6 CFU)
- Set theory a (6 CFU)
- Metodi di analisi armonica in analisi non lineare (6 CFU)
- Algebraic topology a (6 CFU) - Secondo ciclo semestrale
- Set theory b (6 CFU)
- Rappresentazioni di galois p-adiche (6 CFU)
- Spazi di sobolev (6 CFU)
- Metodi numerici per equazioni alle derivate parziali (6 CFU)
- Mathematical aspects in quantum computing (6 CFU) - Primo ciclo semestrale
- Algebraic combinatoris (6 CFU) - Primo ciclo semestrale
- Higher analysis a (6 CFU) - Secondo ciclo semestrale
- Higher analysis b (6 CFU) - Secondo ciclo semestrale
- Teorie in didattica della matematica (6 CFU)
- L functions (6 CFU)
Required
- Final proof (27 CFU)
Istteor - II anno (11 CFU)
- Geometry (11 CFU)
- Algebra (11 CFU)
- Mathematics analysis (11 CFU)
Modaffint - II anno (18 CFU)
- Holomorphic functions and analytic sets (6 CFU)
- Complex analysis and geometry (6 CFU)
- Introduction to computational statistics (6 CFU)
- Laboratory for automatic verification of proofs (6 CFU)
- D-modules (6 CFU)
- Representation theory a (6 CFU)
- Pluripotential theory and positive currents (6 CFU)
- Rough paths analysis (6 CFU)
- Analysis on gaussian spaces (6 CFU)
- Mathematical aspects of reinforcement learning (6 CFU)
- Introduction to stochastic pdes (6 CFU)
- Stochastic optimization (6 CFU)
- Deep learning theory (6 CFU)
- Elements of representation theory (6 CFU)
- Nonlinear optimization (6 CFU)
- Categories in geometry (6 CFU)
- Complements of rational mechanics (6 CFU)
- Complex algebraic geometry (6 CFU)
- Toric geometry (6 CFU)
- Galois groups and fundamental groups (6 CFU)
- Mathematical methods of quantum mechanics (6 CFU)
- Numerical methods for model order reduction (6 CFU)
- Numerical methods for inverse problems (6 CFU)
- Numerical methods for matrix functions (6 CFU)
- Mathematical models and their numerical simulation (6 CFU)
- Numerical methods for markov chains and complex networks (6 CFU)
- Numerical methods for optimal control (6 CFU)
- Tensor numerical methods (6 CFU)
- Randomized algorithms for numerical linear algebra (6 CFU)
- Random dynamical systems (6 CFU)
- Algebraic surfaces (6 CFU)
- Riemann surfaces and algebraic curves (6 CFU)
- Scheme theory (6 CFU)
- Abelian varieties (6 CFU)
- Higher-dimensional algebraic varieties (5 CFU)
- Introduction to quantum mechanics (6 CFU)
- Algebra 1 (6 CFU)
- Algebra 2 (6 CFU)
- Algorithms and data structures (6 CFU)
- Scientific computing (6 CFU)
- Elements of computational algebra (6 CFU)
- Elements of complex analysis (6 CFU)
- Elements of calculus of variations (6 CFU)
- Elements of algebraic geometry (6 CFU)
- Elements of mathematical logic (6 CFU)
- Elements of celestial mechanics (6 CFU)
- Elements of probability and statistics (6 CFU)
- Elements of set theory (6 CFU)
- Elements of algebraic topology (6 CFU)
- Introduction to differential geometry and topology (6 CFU)
- Mathematical logic (6 CFU)
- Elementary mathematics from an advanced standpoint: arithmetic (6 CFU)
- Elementary mathematics from an advanced standpoint: geometry (6 CFU)
- Numerical methods for ordinary differential equations (6 CFU)
- Topological methods in the global analysis (6 CFU)
- Probability (6 CFU)
- Operations research (6 CFU)
- Dynamical systems (6 CFU)
- Mathematical statistics (6 CFU)
- History of mathematics (6 CFU)
- Algebraic number theory 1 (6 CFU)
- Field and galois theories (6 CFU)
- Coding theory and cryptography (6 CFU)
- Elementary number theory (6 CFU)
- Commutative algebra and algebraic computational geometry (6 CFU)
- Computational algebra a (6 CFU)
- Computational algebra b (6 CFU)
- Linear and multilinear algebra (6 CFU)
- Homological algebra (6 CFU)
- Higher algebra a (6 CFU)
- Higher algebra b (6 CFU)
- Lie algebras and lie groups (6 CFU)
- Harmonic analysis (6 CFU)
- Convex analysis (6 CFU)
- Microlocal analysis (6 CFU)
- Non linear analysis (6 CFU)
- Variations calculus a (6 CFU)
- Variations calculus b (6 CFU)
- Cyclotomic fields (6 CFU)
- Functional analysis (6 CFU)
- Orbital determination (6 CFU)
- Hyperbolic dynamics (6 CFU)
- Holomorphic dynamics (6 CFU)
- Ordinary differential equations (6 CFU)
- Elliptic equations (6 CFU)
- Financial mathematics (6 CFU)
- Mathematical physics (6 CFU)
- Principles of mathematics (6 CFU)
- Modular forms (6 CFU)
- Special functions (6 CFU)
- Geometry of metric spaces (6 CFU)
- Contact geometry (6 CFU)
- Complex differential geometry (6 CFU)
- Geometry and topology of surfaces (6 CFU)
- Hyperbolic geometry (6 CFU)
- Real geometry a (6 CFU)
- Real geometry b (6 CFU)
- Real geometry c (6 CFU)
- Computational real geometry (6 CFU)
- Riemannian geometry (6 CFU)
- Symplectic geometry (6 CFU)
- Coxeter groups (6 CFU)
- Introduction to p-adic analysis (6 CFU)
- Discrete mathematics (6 CFU)
- Mathematics and music (6 CFU)
- Celestial mechanics (6 CFU)
- Continuous mechanics (6 CFU)
- Space mechanics (6 CFU)
- Higher mechanics (6 CFU)
- Mathematical methods in cryptography (6 CFU)
- Numerical methods for graphics. (6 CFU)
- Topological methods for differential equations (6 CFU)
- Linear and nonlinear waves (6 CFU)
- Differential operators and index theorems (6 CFU)
- Origins and development of modern mathematics (6 CFU)
- Problem solving (6 CFU)
- Evolution problems (6 CFU)
- Discrete dynamical systems (6 CFU)
- Functional spaces (6 CFU)
- Symmetric spaces (6 CFU)
- History of ancient mathematics and its tradition (6 CFU)
- Minimal surfaces (6 CFU)
- Technologies for education (6 CFU)
- Algebraic number theory 2 (6 CFU)
- Analytic number theory a (6 CFU)
- Analytic number theory b (6 CFU)
- Coding theory (6 CFU)
- Automated control theory (6 CFU)
- Game theory (6 CFU)
- Group theory (6 CFU)
- Model theory (6 CFU)
- Semigroup theory (6 CFU)
- Optimal control theory (6 CFU)
- Computability theory (6 CFU)
- Proof theory (6 CFU)
- Measure theory (6 CFU)
- Category theory (6 CFU)
- Functions theory (6 CFU)
- Descriptive complexity theory (6 CFU)
- Ergodic theory (6 CFU)
- Geometric measure theory (6 CFU)
- Differential topology (6 CFU)
- Low-dimensional topology and geometry (6 CFU)
- General topology (6 CFU)
- Ultrafilters and nonstandard methods (6 CFU)
- 2-manifolds (6 CFU)
- 3-manifolds (6 CFU)
- 4-manifolds (6 CFU)
- Physics III (6 CFU)
- Physics lab for teaching (6 CFU)
- Calculation of elements in homogeneous groups (6 CFU)
- Didactics of mathematics and new technologies (6 CFU)
- Partial differential equations (6 CFU)
- Mathematical analysis 3 (6 CFU)
- Geometric analysis (6 CFU)
- Analysis in metric spaces (6 CFU)
- Non-standard analysis (6 CFU)
- Real analysis (6 CFU)
- Nonlinear capacity, variational inequalities and applications (6 CFU)
- Partial differential equations 2 (6 CFU)
- Equations of fluid mechanics (6 CFU)
- Stochastic differential equations and applications (6 CFU)
- Hyperbolic equations (6 CFU)
- Parabolic equations (6 CFU)
- Mathematical models in biomedicine and mathematical physics (6 CFU)
- Advanced probability (6 CFU)
- Rational mechanics (6 CFU)
- Dynamics of the solar system (6 CFU)
- Relativistic mechanics (6 CFU)
- Complements of mathematics education (6 CFU)
- Introduction to geometric measure theory (6 CFU)
- Operational research and communication and transport nets (6 CFU)
- Problems and methods in mathematics education research (6 CFU)
- Problems and methods in history of mathematics (6 CFU)
- Noncommutative algebra (6 CFU)
- Data analysis (6 CFU)
- Applications of fluid dynamics in biomedicine (6 CFU)
- Applications of differential equations in biomedicine (6 CFU)
- Étale cohomology (6 CFU)
- Post-quantum cryptography (6 CFU)
- Elliptic curves (6 CFU)
- Linear algebraic groups (6 CFU)
- Algebraic number theory 3 (6 CFU)
- Knot theory a (6 CFU)
- Knot theory b (6 CFU)
- Algebraic topology b (6 CFU)
- Set theory a (6 CFU)
- Metodi di analisi armonica in analisi non lineare (6 CFU)
- Algebraic topology a (6 CFU)
- Set theory b (6 CFU)
- Rappresentazioni di galois p-adiche (6 CFU)
- Spazi di sobolev (6 CFU)
- Metodi numerici per equazioni alle derivate parziali (6 CFU)
- Mathematical aspects in quantum computing (6 CFU)
- Algebraic combinatoris (6 CFU)
- Higher analysis a (6 CFU)
- Higher analysis b (6 CFU)
- Teorie in didattica della matematica (6 CFU)
- L functions (6 CFU)
Didattico
Required
- Istituzioni di didattica della matematica (11 CFU) - Primo ciclo semestrale
Modaffint - i anno (6 CFU)
- Holomorphic functions and analytic sets (6 CFU)
- Complex analysis and geometry (6 CFU)
- Introduction to computational statistics (6 CFU)
- Laboratory for automatic verification of proofs (6 CFU)
- D-modules (6 CFU)
- Representation theory a (6 CFU) - Primo ciclo semestrale
- Pluripotential theory and positive currents (6 CFU)
- Rough paths analysis (6 CFU)
- Analysis on gaussian spaces (6 CFU)
- Mathematical aspects of reinforcement learning (6 CFU)
- Introduction to stochastic pdes (6 CFU)
- Stochastic optimization (6 CFU)
- Deep learning theory (6 CFU)
- Elements of representation theory (6 CFU) - Secondo ciclo semestrale
- Nonlinear optimization (6 CFU) - Primo ciclo semestrale
- Categories in geometry (6 CFU)
- Complements of rational mechanics (6 CFU) - Secondo ciclo semestrale
- Complex algebraic geometry (6 CFU) - Secondo ciclo semestrale
- Toric geometry (6 CFU)
- Galois groups and fundamental groups (6 CFU) - Primo ciclo semestrale
- Mathematical methods of quantum mechanics (6 CFU) - Secondo ciclo semestrale
- Numerical methods for model order reduction (6 CFU)
- Numerical methods for inverse problems (6 CFU) - Primo ciclo semestrale
- Numerical methods for matrix functions (6 CFU)
- Mathematical models and their numerical simulation (6 CFU)
- Numerical methods for markov chains and complex networks (6 CFU)
- Numerical methods for optimal control (6 CFU) - Secondo ciclo semestrale
- Tensor numerical methods (6 CFU) - Secondo ciclo semestrale
- Randomized algorithms for numerical linear algebra (6 CFU) - Primo ciclo semestrale
- Random dynamical systems (6 CFU) - Secondo ciclo semestrale
- Algebraic surfaces (6 CFU)
- Riemann surfaces and algebraic curves (6 CFU) - Secondo ciclo semestrale
- Scheme theory (6 CFU)
- Abelian varieties (6 CFU)
- Higher-dimensional algebraic varieties (5 CFU)
- Introduction to quantum mechanics (6 CFU)
- Algebra 1 (6 CFU)
- Algebra 2 (6 CFU) - Secondo ciclo semestrale
- Algorithms and data structures (6 CFU) - Secondo ciclo semestrale
- Scientific computing (6 CFU) - Primo ciclo semestrale
- Elements of computational algebra (6 CFU)
- Elements of complex analysis (6 CFU) - Secondo ciclo semestrale
- Elements of calculus of variations (6 CFU)
- Elements of algebraic geometry (6 CFU) - Primo ciclo semestrale
- Elements of mathematical logic (6 CFU)
- Elements of celestial mechanics (6 CFU) - Secondo ciclo semestrale
- Elements of probability and statistics (6 CFU) - Secondo ciclo semestrale
- Elements of set theory (6 CFU) - Secondo ciclo semestrale
- Elements of algebraic topology (6 CFU) - Primo ciclo semestrale
- Introduction to differential geometry and topology (6 CFU) - Primo ciclo semestrale
- Mathematical logic (6 CFU) - Secondo ciclo semestrale
- Elementary mathematics from an advanced standpoint: arithmetic (6 CFU)
- Elementary mathematics from an advanced standpoint: geometry (6 CFU) - Primo ciclo semestrale
- Numerical methods for ordinary differential equations (6 CFU) - Secondo ciclo semestrale
- Topological methods in the global analysis (6 CFU)
- Probability (6 CFU) - Primo ciclo semestrale
- Operations research (6 CFU) - Secondo ciclo semestrale
- Dynamical systems (6 CFU) - Primo ciclo semestrale
- Mathematical statistics (6 CFU) - Secondo ciclo semestrale
- History of mathematics (6 CFU)
- Algebraic number theory 1 (6 CFU) - Secondo ciclo semestrale
- Field and galois theories (6 CFU)
- Coding theory and cryptography (6 CFU)
- Elementary number theory (6 CFU)
- Commutative algebra and algebraic computational geometry (6 CFU)
- Computational algebra a (6 CFU)
- Computational algebra b (6 CFU)
- Linear and multilinear algebra (6 CFU)
- Homological algebra (6 CFU)
- Higher algebra a (6 CFU) - Secondo ciclo semestrale
- Higher algebra b (6 CFU)
- Lie algebras and lie groups (6 CFU)
- Harmonic analysis (6 CFU) - Primo ciclo semestrale
- Convex analysis (6 CFU)
- Microlocal analysis (6 CFU)
- Non linear analysis (6 CFU)
- Variations calculus a (6 CFU)
- Variations calculus b (6 CFU)
- Cyclotomic fields (6 CFU)
- Functional analysis (6 CFU) - Primo ciclo semestrale
- Orbital determination (6 CFU)
- Hyperbolic dynamics (6 CFU) - Primo ciclo semestrale
- Holomorphic dynamics (6 CFU) - Primo ciclo semestrale
- Ordinary differential equations (6 CFU)
- Elliptic equations (6 CFU)
- Financial mathematics (6 CFU)
- Mathematical physics (6 CFU) - Secondo ciclo semestrale
- Principles of mathematics (6 CFU)
- Modular forms (6 CFU)
- Special functions (6 CFU)
- Geometry of metric spaces (6 CFU)
- Contact geometry (6 CFU)
- Complex differential geometry (6 CFU) - Secondo ciclo semestrale
- Geometry and topology of surfaces (6 CFU)
- Hyperbolic geometry (6 CFU) - Primo ciclo semestrale
- Real geometry a (6 CFU)
- Real geometry b (6 CFU)
- Real geometry c (6 CFU)
- Computational real geometry (6 CFU)
- Riemannian geometry (6 CFU) - Primo ciclo semestrale
- Symplectic geometry (6 CFU)
- Coxeter groups (6 CFU)
- Introduction to p-adic analysis (6 CFU)
- Discrete mathematics (6 CFU)
- Mathematics and music (6 CFU)
- Celestial mechanics (6 CFU)
- Continuous mechanics (6 CFU)
- Space mechanics (6 CFU)
- Higher mechanics (6 CFU) - Secondo ciclo semestrale
- Mathematical methods in cryptography (6 CFU)
- Numerical methods for graphics. (6 CFU)
- Topological methods for differential equations (6 CFU)
- Linear and nonlinear waves (6 CFU)
- Differential operators and index theorems (6 CFU)
- Origins and development of modern mathematics (6 CFU)
- Problem solving (6 CFU)
- Evolution problems (6 CFU)
- Discrete dynamical systems (6 CFU)
- Functional spaces (6 CFU)
- Symmetric spaces (6 CFU)
- History of ancient mathematics and its tradition (6 CFU)
- Minimal surfaces (6 CFU)
- Technologies for education (6 CFU)
- Algebraic number theory 2 (6 CFU)
- Analytic number theory a (6 CFU)
- Analytic number theory b (6 CFU)
- Coding theory (6 CFU)
- Automated control theory (6 CFU)
- Game theory (6 CFU) - Secondo ciclo semestrale
- Group theory (6 CFU)
- Model theory (6 CFU)
- Semigroup theory (6 CFU)
- Optimal control theory (6 CFU)
- Computability theory (6 CFU)
- Proof theory (6 CFU)
- Measure theory (6 CFU) - Primo ciclo semestrale
- Category theory (6 CFU) - Secondo ciclo semestrale
- Functions theory (6 CFU)
- Descriptive complexity theory (6 CFU)
- Ergodic theory (6 CFU)
- Geometric measure theory (6 CFU)
- Differential topology (6 CFU)
- Low-dimensional topology and geometry (6 CFU) - Secondo ciclo semestrale
- General topology (6 CFU)
- Ultrafilters and nonstandard methods (6 CFU)
- 2-manifolds (6 CFU)
- 3-manifolds (6 CFU)
- 4-manifolds (6 CFU)
- Physics III (6 CFU) - Secondo ciclo semestrale
- Physics lab for teaching (6 CFU)
- Calculation of elements in homogeneous groups (6 CFU) - Secondo ciclo semestrale
- Didactics of mathematics and new technologies (6 CFU) - Secondo ciclo semestrale
- Partial differential equations (6 CFU) - Secondo ciclo semestrale
- Mathematical analysis 3 (6 CFU) - Primo ciclo semestrale
- Geometric analysis (6 CFU)
- Analysis in metric spaces (6 CFU)
- Non-standard analysis (6 CFU)
- Real analysis (6 CFU)
- Nonlinear capacity, variational inequalities and applications (6 CFU)
- Partial differential equations 2 (6 CFU)
- Equations of fluid mechanics (6 CFU)
- Stochastic differential equations and applications (6 CFU)
- Hyperbolic equations (6 CFU)
- Parabolic equations (6 CFU)
- Mathematical models in biomedicine and mathematical physics (6 CFU) - Secondo ciclo semestrale
- Advanced probability (6 CFU)
- Rational mechanics (6 CFU) - Secondo ciclo semestrale
- Dynamics of the solar system (6 CFU) - Secondo ciclo semestrale
- Relativistic mechanics (6 CFU)
- Complements of mathematics education (6 CFU)
- Introduction to geometric measure theory (6 CFU)
- Operational research and communication and transport nets (6 CFU)
- Problems and methods in mathematics education research (6 CFU)
- Problems and methods in history of mathematics (6 CFU)
- Noncommutative algebra (6 CFU)
- Data analysis (6 CFU) - Secondo ciclo semestrale
- Applications of fluid dynamics in biomedicine (6 CFU)
- Applications of differential equations in biomedicine (6 CFU)
- Étale cohomology (6 CFU)
- Post-quantum cryptography (6 CFU)
- Elliptic curves (6 CFU)
- Linear algebraic groups (6 CFU)
- Algebraic number theory 3 (6 CFU)
- Knot theory a (6 CFU)
- Knot theory b (6 CFU)
- Algebraic topology b (6 CFU)
- Set theory a (6 CFU)
- Metodi di analisi armonica in analisi non lineare (6 CFU)
- Algebraic topology a (6 CFU) - Secondo ciclo semestrale
- Set theory b (6 CFU)
- Rappresentazioni di galois p-adiche (6 CFU)
- Spazi di sobolev (6 CFU)
- Metodi numerici per equazioni alle derivate parziali (6 CFU)
- Mathematical aspects in quantum computing (6 CFU) - Primo ciclo semestrale
- Algebraic combinatoris (6 CFU) - Primo ciclo semestrale
- Higher analysis a (6 CFU) - Secondo ciclo semestrale
- Higher analysis b (6 CFU) - Secondo ciclo semestrale
- Teorie in didattica della matematica (6 CFU)
- L functions (6 CFU)
Istteor - i anno (11 CFU)
- Geometry (11 CFU) - Secondo ciclo semestrale
- Algebra (11 CFU) - Primo ciclo semestrale
- Mathematics analysis (11 CFU) - Primo ciclo semestrale
Required
- Final proof (27 CFU)
Modaffint - II anno (12 CFU)
- Holomorphic functions and analytic sets (6 CFU)
- Complex analysis and geometry (6 CFU)
- Introduction to computational statistics (6 CFU)
- Laboratory for automatic verification of proofs (6 CFU)
- D-modules (6 CFU)
- Representation theory a (6 CFU)
- Pluripotential theory and positive currents (6 CFU)
- Rough paths analysis (6 CFU)
- Analysis on gaussian spaces (6 CFU)
- Mathematical aspects of reinforcement learning (6 CFU)
- Introduction to stochastic pdes (6 CFU)
- Stochastic optimization (6 CFU)
- Deep learning theory (6 CFU)
- Elements of representation theory (6 CFU)
- Nonlinear optimization (6 CFU)
- Categories in geometry (6 CFU)
- Complements of rational mechanics (6 CFU)
- Complex algebraic geometry (6 CFU)
- Toric geometry (6 CFU)
- Galois groups and fundamental groups (6 CFU)
- Mathematical methods of quantum mechanics (6 CFU)
- Numerical methods for model order reduction (6 CFU)
- Numerical methods for inverse problems (6 CFU)
- Numerical methods for matrix functions (6 CFU)
- Mathematical models and their numerical simulation (6 CFU)
- Numerical methods for markov chains and complex networks (6 CFU)
- Numerical methods for optimal control (6 CFU)
- Tensor numerical methods (6 CFU)
- Randomized algorithms for numerical linear algebra (6 CFU)
- Random dynamical systems (6 CFU)
- Algebraic surfaces (6 CFU)
- Riemann surfaces and algebraic curves (6 CFU)
- Scheme theory (6 CFU)
- Abelian varieties (6 CFU)
- Higher-dimensional algebraic varieties (5 CFU)
- Introduction to quantum mechanics (6 CFU)
- Algebra 1 (6 CFU)
- Algebra 2 (6 CFU)
- Algorithms and data structures (6 CFU)
- Scientific computing (6 CFU)
- Elements of computational algebra (6 CFU)
- Elements of complex analysis (6 CFU)
- Elements of calculus of variations (6 CFU)
- Elements of algebraic geometry (6 CFU)
- Elements of mathematical logic (6 CFU)
- Elements of celestial mechanics (6 CFU)
- Elements of probability and statistics (6 CFU)
- Elements of set theory (6 CFU)
- Elements of algebraic topology (6 CFU)
- Introduction to differential geometry and topology (6 CFU)
- Mathematical logic (6 CFU)
- Elementary mathematics from an advanced standpoint: arithmetic (6 CFU)
- Elementary mathematics from an advanced standpoint: geometry (6 CFU)
- Numerical methods for ordinary differential equations (6 CFU)
- Topological methods in the global analysis (6 CFU)
- Probability (6 CFU)
- Operations research (6 CFU)
- Dynamical systems (6 CFU)
- Mathematical statistics (6 CFU)
- History of mathematics (6 CFU)
- Algebraic number theory 1 (6 CFU)
- Field and galois theories (6 CFU)
- Coding theory and cryptography (6 CFU)
- Elementary number theory (6 CFU)
- Commutative algebra and algebraic computational geometry (6 CFU)
- Computational algebra a (6 CFU)
- Computational algebra b (6 CFU)
- Linear and multilinear algebra (6 CFU)
- Homological algebra (6 CFU)
- Higher algebra a (6 CFU)
- Higher algebra b (6 CFU)
- Lie algebras and lie groups (6 CFU)
- Harmonic analysis (6 CFU)
- Convex analysis (6 CFU)
- Microlocal analysis (6 CFU)
- Non linear analysis (6 CFU)
- Variations calculus a (6 CFU)
- Variations calculus b (6 CFU)
- Cyclotomic fields (6 CFU)
- Functional analysis (6 CFU)
- Orbital determination (6 CFU)
- Hyperbolic dynamics (6 CFU)
- Holomorphic dynamics (6 CFU)
- Ordinary differential equations (6 CFU)
- Elliptic equations (6 CFU)
- Financial mathematics (6 CFU)
- Mathematical physics (6 CFU)
- Principles of mathematics (6 CFU)
- Modular forms (6 CFU)
- Special functions (6 CFU)
- Geometry of metric spaces (6 CFU)
- Contact geometry (6 CFU)
- Complex differential geometry (6 CFU)
- Geometry and topology of surfaces (6 CFU)
- Hyperbolic geometry (6 CFU)
- Real geometry a (6 CFU)
- Real geometry b (6 CFU)
- Real geometry c (6 CFU)
- Computational real geometry (6 CFU)
- Riemannian geometry (6 CFU)
- Symplectic geometry (6 CFU)
- Coxeter groups (6 CFU)
- Introduction to p-adic analysis (6 CFU)
- Discrete mathematics (6 CFU)
- Mathematics and music (6 CFU)
- Celestial mechanics (6 CFU)
- Continuous mechanics (6 CFU)
- Space mechanics (6 CFU)
- Higher mechanics (6 CFU)
- Mathematical methods in cryptography (6 CFU)
- Numerical methods for graphics. (6 CFU)
- Topological methods for differential equations (6 CFU)
- Linear and nonlinear waves (6 CFU)
- Differential operators and index theorems (6 CFU)
- Origins and development of modern mathematics (6 CFU)
- Problem solving (6 CFU)
- Evolution problems (6 CFU)
- Discrete dynamical systems (6 CFU)
- Functional spaces (6 CFU)
- Symmetric spaces (6 CFU)
- History of ancient mathematics and its tradition (6 CFU)
- Minimal surfaces (6 CFU)
- Technologies for education (6 CFU)
- Algebraic number theory 2 (6 CFU)
- Analytic number theory a (6 CFU)
- Analytic number theory b (6 CFU)
- Coding theory (6 CFU)
- Automated control theory (6 CFU)
- Game theory (6 CFU)
- Group theory (6 CFU)
- Model theory (6 CFU)
- Semigroup theory (6 CFU)
- Optimal control theory (6 CFU)
- Computability theory (6 CFU)
- Proof theory (6 CFU)
- Measure theory (6 CFU)
- Category theory (6 CFU)
- Functions theory (6 CFU)
- Descriptive complexity theory (6 CFU)
- Ergodic theory (6 CFU)
- Geometric measure theory (6 CFU)
- Differential topology (6 CFU)
- Low-dimensional topology and geometry (6 CFU)
- General topology (6 CFU)
- Ultrafilters and nonstandard methods (6 CFU)
- 2-manifolds (6 CFU)
- 3-manifolds (6 CFU)
- 4-manifolds (6 CFU)
- Physics III (6 CFU)
- Physics lab for teaching (6 CFU)
- Calculation of elements in homogeneous groups (6 CFU)
- Didactics of mathematics and new technologies (6 CFU)
- Partial differential equations (6 CFU)
- Mathematical analysis 3 (6 CFU)
- Geometric analysis (6 CFU)
- Analysis in metric spaces (6 CFU)
- Non-standard analysis (6 CFU)
- Real analysis (6 CFU)
- Nonlinear capacity, variational inequalities and applications (6 CFU)
- Partial differential equations 2 (6 CFU)
- Equations of fluid mechanics (6 CFU)
- Stochastic differential equations and applications (6 CFU)
- Hyperbolic equations (6 CFU)
- Parabolic equations (6 CFU)
- Mathematical models in biomedicine and mathematical physics (6 CFU)
- Advanced probability (6 CFU)
- Rational mechanics (6 CFU)
- Dynamics of the solar system (6 CFU)
- Relativistic mechanics (6 CFU)
- Complements of mathematics education (6 CFU)
- Introduction to geometric measure theory (6 CFU)
- Operational research and communication and transport nets (6 CFU)
- Problems and methods in mathematics education research (6 CFU)
- Problems and methods in history of mathematics (6 CFU)
- Noncommutative algebra (6 CFU)
- Data analysis (6 CFU)
- Applications of fluid dynamics in biomedicine (6 CFU)
- Applications of differential equations in biomedicine (6 CFU)
- Étale cohomology (6 CFU)
- Post-quantum cryptography (6 CFU)
- Elliptic curves (6 CFU)
- Linear algebraic groups (6 CFU)
- Algebraic number theory 3 (6 CFU)
- Knot theory a (6 CFU)
- Knot theory b (6 CFU)
- Algebraic topology b (6 CFU)
- Set theory a (6 CFU)
- Metodi di analisi armonica in analisi non lineare (6 CFU)
- Algebraic topology a (6 CFU)
- Set theory b (6 CFU)
- Rappresentazioni di galois p-adiche (6 CFU)
- Spazi di sobolev (6 CFU)
- Metodi numerici per equazioni alle derivate parziali (6 CFU)
- Mathematical aspects in quantum computing (6 CFU)
- Algebraic combinatoris (6 CFU)
- Higher analysis a (6 CFU)
- Higher analysis b (6 CFU)
- Teorie in didattica della matematica (6 CFU)
- L functions (6 CFU)
Modaffint2 - II anno (6 CFU)
Istappteor - II anno (11 CFU)
- Geometry (11 CFU)
- Algebra (11 CFU)
- Mathematics analysis (11 CFU)
- Istituzioni di analisi numerica (11 CFU)
- Istituzioni di probabilità (11 CFU)
- Istituzioni di fisica matematica (11 CFU)
Generale
Modaffint - i anno (6 CFU)
- Holomorphic functions and analytic sets (6 CFU)
- Complex analysis and geometry (6 CFU)
- Introduction to computational statistics (6 CFU)
- Laboratory for automatic verification of proofs (6 CFU)
- D-modules (6 CFU)
- Representation theory a (6 CFU) - Primo ciclo semestrale
- Pluripotential theory and positive currents (6 CFU)
- Rough paths analysis (6 CFU)
- Analysis on gaussian spaces (6 CFU)
- Mathematical aspects of reinforcement learning (6 CFU)
- Introduction to stochastic pdes (6 CFU)
- Stochastic optimization (6 CFU)
- Deep learning theory (6 CFU)
- Elements of representation theory (6 CFU) - Secondo ciclo semestrale
- Nonlinear optimization (6 CFU) - Primo ciclo semestrale
- Categories in geometry (6 CFU)
- Complements of rational mechanics (6 CFU) - Secondo ciclo semestrale
- Complex algebraic geometry (6 CFU) - Secondo ciclo semestrale
- Toric geometry (6 CFU)
- Galois groups and fundamental groups (6 CFU) - Primo ciclo semestrale
- Mathematical methods of quantum mechanics (6 CFU) - Secondo ciclo semestrale
- Numerical methods for model order reduction (6 CFU)
- Numerical methods for inverse problems (6 CFU) - Primo ciclo semestrale
- Numerical methods for matrix functions (6 CFU)
- Mathematical models and their numerical simulation (6 CFU)
- Numerical methods for markov chains and complex networks (6 CFU)
- Numerical methods for optimal control (6 CFU) - Secondo ciclo semestrale
- Tensor numerical methods (6 CFU) - Secondo ciclo semestrale
- Randomized algorithms for numerical linear algebra (6 CFU) - Primo ciclo semestrale
- Random dynamical systems (6 CFU) - Secondo ciclo semestrale
- Algebraic surfaces (6 CFU)
- Riemann surfaces and algebraic curves (6 CFU) - Secondo ciclo semestrale
- Scheme theory (6 CFU)
- Abelian varieties (6 CFU)
- Higher-dimensional algebraic varieties (5 CFU)
- Introduction to quantum mechanics (6 CFU)
- Algebra 1 (6 CFU)
- Algebra 2 (6 CFU) - Secondo ciclo semestrale
- Algorithms and data structures (6 CFU) - Secondo ciclo semestrale
- Scientific computing (6 CFU) - Primo ciclo semestrale
- Elements of computational algebra (6 CFU)
- Elements of complex analysis (6 CFU) - Secondo ciclo semestrale
- Elements of calculus of variations (6 CFU)
- Elements of algebraic geometry (6 CFU) - Primo ciclo semestrale
- Elements of mathematical logic (6 CFU)
- Elements of celestial mechanics (6 CFU) - Secondo ciclo semestrale
- Elements of probability and statistics (6 CFU) - Secondo ciclo semestrale
- Elements of set theory (6 CFU) - Secondo ciclo semestrale
- Elements of algebraic topology (6 CFU) - Primo ciclo semestrale
- Introduction to differential geometry and topology (6 CFU) - Primo ciclo semestrale
- Mathematical logic (6 CFU) - Secondo ciclo semestrale
- Elementary mathematics from an advanced standpoint: arithmetic (6 CFU)
- Elementary mathematics from an advanced standpoint: geometry (6 CFU) - Primo ciclo semestrale
- Numerical methods for ordinary differential equations (6 CFU) - Secondo ciclo semestrale
- Topological methods in the global analysis (6 CFU)
- Probability (6 CFU) - Primo ciclo semestrale
- Operations research (6 CFU) - Secondo ciclo semestrale
- Dynamical systems (6 CFU) - Primo ciclo semestrale
- Mathematical statistics (6 CFU) - Secondo ciclo semestrale
- History of mathematics (6 CFU)
- Algebraic number theory 1 (6 CFU) - Secondo ciclo semestrale
- Field and galois theories (6 CFU)
- Coding theory and cryptography (6 CFU)
- Elementary number theory (6 CFU)
- Commutative algebra and algebraic computational geometry (6 CFU)
- Computational algebra a (6 CFU)
- Computational algebra b (6 CFU)
- Linear and multilinear algebra (6 CFU)
- Homological algebra (6 CFU)
- Higher algebra a (6 CFU) - Secondo ciclo semestrale
- Higher algebra b (6 CFU)
- Lie algebras and lie groups (6 CFU)
- Harmonic analysis (6 CFU) - Primo ciclo semestrale
- Convex analysis (6 CFU)
- Microlocal analysis (6 CFU)
- Non linear analysis (6 CFU)
- Variations calculus a (6 CFU)
- Variations calculus b (6 CFU)
- Cyclotomic fields (6 CFU)
- Functional analysis (6 CFU) - Primo ciclo semestrale
- Orbital determination (6 CFU)
- Hyperbolic dynamics (6 CFU) - Primo ciclo semestrale
- Holomorphic dynamics (6 CFU) - Primo ciclo semestrale
- Ordinary differential equations (6 CFU)
- Elliptic equations (6 CFU)
- Financial mathematics (6 CFU)
- Mathematical physics (6 CFU) - Secondo ciclo semestrale
- Principles of mathematics (6 CFU)
- Modular forms (6 CFU)
- Special functions (6 CFU)
- Geometry of metric spaces (6 CFU)
- Contact geometry (6 CFU)
- Complex differential geometry (6 CFU) - Secondo ciclo semestrale
- Geometry and topology of surfaces (6 CFU)
- Hyperbolic geometry (6 CFU) - Primo ciclo semestrale
- Real geometry a (6 CFU)
- Real geometry b (6 CFU)
- Real geometry c (6 CFU)
- Computational real geometry (6 CFU)
- Riemannian geometry (6 CFU) - Primo ciclo semestrale
- Symplectic geometry (6 CFU)
- Coxeter groups (6 CFU)
- Introduction to p-adic analysis (6 CFU)
- Discrete mathematics (6 CFU)
- Mathematics and music (6 CFU)
- Celestial mechanics (6 CFU)
- Continuous mechanics (6 CFU)
- Space mechanics (6 CFU)
- Higher mechanics (6 CFU) - Secondo ciclo semestrale
- Mathematical methods in cryptography (6 CFU)
- Numerical methods for graphics. (6 CFU)
- Topological methods for differential equations (6 CFU)
- Linear and nonlinear waves (6 CFU)
- Differential operators and index theorems (6 CFU)
- Origins and development of modern mathematics (6 CFU)
- Problem solving (6 CFU)
- Evolution problems (6 CFU)
- Discrete dynamical systems (6 CFU)
- Functional spaces (6 CFU)
- Symmetric spaces (6 CFU)
- History of ancient mathematics and its tradition (6 CFU)
- Minimal surfaces (6 CFU)
- Technologies for education (6 CFU)
- Algebraic number theory 2 (6 CFU)
- Analytic number theory a (6 CFU)
- Analytic number theory b (6 CFU)
- Coding theory (6 CFU)
- Automated control theory (6 CFU)
- Game theory (6 CFU) - Secondo ciclo semestrale
- Group theory (6 CFU)
- Model theory (6 CFU)
- Semigroup theory (6 CFU)
- Optimal control theory (6 CFU)
- Computability theory (6 CFU)
- Proof theory (6 CFU)
- Measure theory (6 CFU) - Primo ciclo semestrale
- Category theory (6 CFU) - Secondo ciclo semestrale
- Functions theory (6 CFU)
- Descriptive complexity theory (6 CFU)
- Ergodic theory (6 CFU)
- Geometric measure theory (6 CFU)
- Differential topology (6 CFU)
- Low-dimensional topology and geometry (6 CFU) - Secondo ciclo semestrale
- General topology (6 CFU)
- Ultrafilters and nonstandard methods (6 CFU)
- 2-manifolds (6 CFU)
- 3-manifolds (6 CFU)
- 4-manifolds (6 CFU)
- Physics III (6 CFU) - Secondo ciclo semestrale
- Physics lab for teaching (6 CFU)
- Calculation of elements in homogeneous groups (6 CFU) - Secondo ciclo semestrale
- Didactics of mathematics and new technologies (6 CFU) - Secondo ciclo semestrale
- Partial differential equations (6 CFU) - Secondo ciclo semestrale
- Mathematical analysis 3 (6 CFU) - Primo ciclo semestrale
- Geometric analysis (6 CFU)
- Analysis in metric spaces (6 CFU)
- Non-standard analysis (6 CFU)
- Real analysis (6 CFU)
- Nonlinear capacity, variational inequalities and applications (6 CFU)
- Partial differential equations 2 (6 CFU)
- Equations of fluid mechanics (6 CFU)
- Stochastic differential equations and applications (6 CFU)
- Hyperbolic equations (6 CFU)
- Parabolic equations (6 CFU)
- Mathematical models in biomedicine and mathematical physics (6 CFU) - Secondo ciclo semestrale
- Advanced probability (6 CFU)
- Rational mechanics (6 CFU) - Secondo ciclo semestrale
- Dynamics of the solar system (6 CFU) - Secondo ciclo semestrale
- Relativistic mechanics (6 CFU)
- Complements of mathematics education (6 CFU)
- Introduction to geometric measure theory (6 CFU)
- Operational research and communication and transport nets (6 CFU)
- Problems and methods in mathematics education research (6 CFU)
- Problems and methods in history of mathematics (6 CFU)
- Noncommutative algebra (6 CFU)
- Data analysis (6 CFU) - Secondo ciclo semestrale
- Applications of fluid dynamics in biomedicine (6 CFU)
- Applications of differential equations in biomedicine (6 CFU)
- Étale cohomology (6 CFU)
- Post-quantum cryptography (6 CFU)
- Elliptic curves (6 CFU)
- Linear algebraic groups (6 CFU)
- Algebraic number theory 3 (6 CFU)
- Knot theory a (6 CFU)
- Knot theory b (6 CFU)
- Algebraic topology b (6 CFU)
- Set theory a (6 CFU)
- Metodi di analisi armonica in analisi non lineare (6 CFU)
- Algebraic topology a (6 CFU) - Secondo ciclo semestrale
- Set theory b (6 CFU)
- Rappresentazioni di galois p-adiche (6 CFU)
- Spazi di sobolev (6 CFU)
- Metodi numerici per equazioni alle derivate parziali (6 CFU)
- Mathematical aspects in quantum computing (6 CFU) - Primo ciclo semestrale
- Algebraic combinatoris (6 CFU) - Primo ciclo semestrale
- Higher analysis a (6 CFU) - Secondo ciclo semestrale
- Higher analysis b (6 CFU) - Secondo ciclo semestrale
- Teorie in didattica della matematica (6 CFU)
- L functions (6 CFU)
Istappl - i anno (11 CFU)
- Istituzioni di analisi numerica (11 CFU) - Secondo ciclo semestrale
- Istituzioni di probabilità (11 CFU) - Secondo ciclo semestrale
- Istituzioni di fisica matematica (11 CFU) - Primo ciclo semestrale
Istteor - i anno (11 CFU)
- Geometry (11 CFU) - Secondo ciclo semestrale
- Algebra (11 CFU) - Primo ciclo semestrale
- Mathematics analysis (11 CFU) - Primo ciclo semestrale
Required
- Final proof (27 CFU)
Modaffint - II anno (18 CFU)
- Holomorphic functions and analytic sets (6 CFU)
- Complex analysis and geometry (6 CFU)
- Introduction to computational statistics (6 CFU)
- Laboratory for automatic verification of proofs (6 CFU)
- D-modules (6 CFU)
- Representation theory a (6 CFU)
- Pluripotential theory and positive currents (6 CFU)
- Rough paths analysis (6 CFU)
- Analysis on gaussian spaces (6 CFU)
- Mathematical aspects of reinforcement learning (6 CFU)
- Introduction to stochastic pdes (6 CFU)
- Stochastic optimization (6 CFU)
- Deep learning theory (6 CFU)
- Elements of representation theory (6 CFU)
- Nonlinear optimization (6 CFU)
- Categories in geometry (6 CFU)
- Complements of rational mechanics (6 CFU)
- Complex algebraic geometry (6 CFU)
- Toric geometry (6 CFU)
- Galois groups and fundamental groups (6 CFU)
- Mathematical methods of quantum mechanics (6 CFU)
- Numerical methods for model order reduction (6 CFU)
- Numerical methods for inverse problems (6 CFU)
- Numerical methods for matrix functions (6 CFU)
- Mathematical models and their numerical simulation (6 CFU)
- Numerical methods for markov chains and complex networks (6 CFU)
- Numerical methods for optimal control (6 CFU)
- Tensor numerical methods (6 CFU)
- Randomized algorithms for numerical linear algebra (6 CFU)
- Random dynamical systems (6 CFU)
- Algebraic surfaces (6 CFU)
- Riemann surfaces and algebraic curves (6 CFU)
- Scheme theory (6 CFU)
- Abelian varieties (6 CFU)
- Higher-dimensional algebraic varieties (5 CFU)
- Introduction to quantum mechanics (6 CFU)
- Algebra 1 (6 CFU)
- Algebra 2 (6 CFU)
- Algorithms and data structures (6 CFU)
- Scientific computing (6 CFU)
- Elements of computational algebra (6 CFU)
- Elements of complex analysis (6 CFU)
- Elements of calculus of variations (6 CFU)
- Elements of algebraic geometry (6 CFU)
- Elements of mathematical logic (6 CFU)
- Elements of celestial mechanics (6 CFU)
- Elements of probability and statistics (6 CFU)
- Elements of set theory (6 CFU)
- Elements of algebraic topology (6 CFU)
- Introduction to differential geometry and topology (6 CFU)
- Mathematical logic (6 CFU)
- Elementary mathematics from an advanced standpoint: arithmetic (6 CFU)
- Elementary mathematics from an advanced standpoint: geometry (6 CFU)
- Numerical methods for ordinary differential equations (6 CFU)
- Topological methods in the global analysis (6 CFU)
- Probability (6 CFU)
- Operations research (6 CFU)
- Dynamical systems (6 CFU)
- Mathematical statistics (6 CFU)
- History of mathematics (6 CFU)
- Algebraic number theory 1 (6 CFU)
- Field and galois theories (6 CFU)
- Coding theory and cryptography (6 CFU)
- Elementary number theory (6 CFU)
- Commutative algebra and algebraic computational geometry (6 CFU)
- Computational algebra a (6 CFU)
- Computational algebra b (6 CFU)
- Linear and multilinear algebra (6 CFU)
- Homological algebra (6 CFU)
- Higher algebra a (6 CFU)
- Higher algebra b (6 CFU)
- Lie algebras and lie groups (6 CFU)
- Harmonic analysis (6 CFU)
- Convex analysis (6 CFU)
- Microlocal analysis (6 CFU)
- Non linear analysis (6 CFU)
- Variations calculus a (6 CFU)
- Variations calculus b (6 CFU)
- Cyclotomic fields (6 CFU)
- Functional analysis (6 CFU)
- Orbital determination (6 CFU)
- Hyperbolic dynamics (6 CFU)
- Holomorphic dynamics (6 CFU)
- Ordinary differential equations (6 CFU)
- Elliptic equations (6 CFU)
- Financial mathematics (6 CFU)
- Mathematical physics (6 CFU)
- Principles of mathematics (6 CFU)
- Modular forms (6 CFU)
- Special functions (6 CFU)
- Geometry of metric spaces (6 CFU)
- Contact geometry (6 CFU)
- Complex differential geometry (6 CFU)
- Geometry and topology of surfaces (6 CFU)
- Hyperbolic geometry (6 CFU)
- Real geometry a (6 CFU)
- Real geometry b (6 CFU)
- Real geometry c (6 CFU)
- Computational real geometry (6 CFU)
- Riemannian geometry (6 CFU)
- Symplectic geometry (6 CFU)
- Coxeter groups (6 CFU)
- Introduction to p-adic analysis (6 CFU)
- Discrete mathematics (6 CFU)
- Mathematics and music (6 CFU)
- Celestial mechanics (6 CFU)
- Continuous mechanics (6 CFU)
- Space mechanics (6 CFU)
- Higher mechanics (6 CFU)
- Mathematical methods in cryptography (6 CFU)
- Numerical methods for graphics. (6 CFU)
- Topological methods for differential equations (6 CFU)
- Linear and nonlinear waves (6 CFU)
- Differential operators and index theorems (6 CFU)
- Origins and development of modern mathematics (6 CFU)
- Problem solving (6 CFU)
- Evolution problems (6 CFU)
- Discrete dynamical systems (6 CFU)
- Functional spaces (6 CFU)
- Symmetric spaces (6 CFU)
- History of ancient mathematics and its tradition (6 CFU)
- Minimal surfaces (6 CFU)
- Technologies for education (6 CFU)
- Algebraic number theory 2 (6 CFU)
- Analytic number theory a (6 CFU)
- Analytic number theory b (6 CFU)
- Coding theory (6 CFU)
- Automated control theory (6 CFU)
- Game theory (6 CFU)
- Group theory (6 CFU)
- Model theory (6 CFU)
- Semigroup theory (6 CFU)
- Optimal control theory (6 CFU)
- Computability theory (6 CFU)
- Proof theory (6 CFU)
- Measure theory (6 CFU)
- Category theory (6 CFU)
- Functions theory (6 CFU)
- Descriptive complexity theory (6 CFU)
- Ergodic theory (6 CFU)
- Geometric measure theory (6 CFU)
- Differential topology (6 CFU)
- Low-dimensional topology and geometry (6 CFU)
- General topology (6 CFU)
- Ultrafilters and nonstandard methods (6 CFU)
- 2-manifolds (6 CFU)
- 3-manifolds (6 CFU)
- 4-manifolds (6 CFU)
- Physics III (6 CFU)
- Physics lab for teaching (6 CFU)
- Calculation of elements in homogeneous groups (6 CFU)
- Didactics of mathematics and new technologies (6 CFU)
- Partial differential equations (6 CFU)
- Mathematical analysis 3 (6 CFU)
- Geometric analysis (6 CFU)
- Analysis in metric spaces (6 CFU)
- Non-standard analysis (6 CFU)
- Real analysis (6 CFU)
- Nonlinear capacity, variational inequalities and applications (6 CFU)
- Partial differential equations 2 (6 CFU)
- Equations of fluid mechanics (6 CFU)
- Stochastic differential equations and applications (6 CFU)
- Hyperbolic equations (6 CFU)
- Parabolic equations (6 CFU)
- Mathematical models in biomedicine and mathematical physics (6 CFU)
- Advanced probability (6 CFU)
- Rational mechanics (6 CFU)
- Dynamics of the solar system (6 CFU)
- Relativistic mechanics (6 CFU)
- Complements of mathematics education (6 CFU)
- Introduction to geometric measure theory (6 CFU)
- Operational research and communication and transport nets (6 CFU)
- Problems and methods in mathematics education research (6 CFU)
- Problems and methods in history of mathematics (6 CFU)
- Noncommutative algebra (6 CFU)
- Data analysis (6 CFU)
- Applications of fluid dynamics in biomedicine (6 CFU)
- Applications of differential equations in biomedicine (6 CFU)
- Étale cohomology (6 CFU)
- Post-quantum cryptography (6 CFU)
- Elliptic curves (6 CFU)
- Linear algebraic groups (6 CFU)
- Algebraic number theory 3 (6 CFU)
- Knot theory a (6 CFU)
- Knot theory b (6 CFU)
- Algebraic topology b (6 CFU)
- Set theory a (6 CFU)
- Metodi di analisi armonica in analisi non lineare (6 CFU)
- Algebraic topology a (6 CFU)
- Set theory b (6 CFU)
- Rappresentazioni di galois p-adiche (6 CFU)
- Spazi di sobolev (6 CFU)
- Metodi numerici per equazioni alle derivate parziali (6 CFU)
- Mathematical aspects in quantum computing (6 CFU)
- Algebraic combinatoris (6 CFU)
- Higher analysis a (6 CFU)
- Higher analysis b (6 CFU)
- Teorie in didattica della matematica (6 CFU)
- L functions (6 CFU)
Isttot - II anno (11 CFU)
- Geometry (11 CFU)
- Algebra (11 CFU)
- Mathematics analysis (11 CFU)
- Istituzioni di didattica della matematica (11 CFU)
- Istituzioni di analisi numerica (11 CFU)
- Istituzioni di probabilità (11 CFU)
- Istituzioni di fisica matematica (11 CFU)
Modellistico
Required
- Mathematics analysis (11 CFU) - Primo ciclo semestrale
- Istituzioni di probabilità (11 CFU) - Secondo ciclo semestrale
Modaffint - i anno (6 CFU)
- Holomorphic functions and analytic sets (6 CFU)
- Complex analysis and geometry (6 CFU)
- Introduction to computational statistics (6 CFU)
- Laboratory for automatic verification of proofs (6 CFU)
- D-modules (6 CFU)
- Representation theory a (6 CFU) - Primo ciclo semestrale
- Pluripotential theory and positive currents (6 CFU)
- Rough paths analysis (6 CFU)
- Analysis on gaussian spaces (6 CFU)
- Mathematical aspects of reinforcement learning (6 CFU)
- Introduction to stochastic pdes (6 CFU)
- Stochastic optimization (6 CFU)
- Deep learning theory (6 CFU)
- Elements of representation theory (6 CFU) - Secondo ciclo semestrale
- Nonlinear optimization (6 CFU) - Primo ciclo semestrale
- Categories in geometry (6 CFU)
- Complements of rational mechanics (6 CFU) - Secondo ciclo semestrale
- Complex algebraic geometry (6 CFU) - Secondo ciclo semestrale
- Toric geometry (6 CFU)
- Galois groups and fundamental groups (6 CFU) - Primo ciclo semestrale
- Mathematical methods of quantum mechanics (6 CFU) - Secondo ciclo semestrale
- Numerical methods for model order reduction (6 CFU)
- Numerical methods for inverse problems (6 CFU) - Primo ciclo semestrale
- Numerical methods for matrix functions (6 CFU)
- Mathematical models and their numerical simulation (6 CFU)
- Numerical methods for markov chains and complex networks (6 CFU)
- Numerical methods for optimal control (6 CFU) - Secondo ciclo semestrale
- Tensor numerical methods (6 CFU) - Secondo ciclo semestrale
- Randomized algorithms for numerical linear algebra (6 CFU) - Primo ciclo semestrale
- Random dynamical systems (6 CFU) - Secondo ciclo semestrale
- Algebraic surfaces (6 CFU)
- Riemann surfaces and algebraic curves (6 CFU) - Secondo ciclo semestrale
- Scheme theory (6 CFU)
- Abelian varieties (6 CFU)
- Higher-dimensional algebraic varieties (5 CFU)
- Introduction to quantum mechanics (6 CFU)
- Algebra 1 (6 CFU)
- Algebra 2 (6 CFU) - Secondo ciclo semestrale
- Algorithms and data structures (6 CFU) - Secondo ciclo semestrale
- Scientific computing (6 CFU) - Primo ciclo semestrale
- Elements of computational algebra (6 CFU)
- Elements of complex analysis (6 CFU) - Secondo ciclo semestrale
- Elements of calculus of variations (6 CFU)
- Elements of algebraic geometry (6 CFU) - Primo ciclo semestrale
- Elements of mathematical logic (6 CFU)
- Elements of celestial mechanics (6 CFU) - Secondo ciclo semestrale
- Elements of probability and statistics (6 CFU) - Secondo ciclo semestrale
- Elements of set theory (6 CFU) - Secondo ciclo semestrale
- Elements of algebraic topology (6 CFU) - Primo ciclo semestrale
- Introduction to differential geometry and topology (6 CFU) - Primo ciclo semestrale
- Mathematical logic (6 CFU) - Secondo ciclo semestrale
- Elementary mathematics from an advanced standpoint: arithmetic (6 CFU)
- Elementary mathematics from an advanced standpoint: geometry (6 CFU) - Primo ciclo semestrale
- Numerical methods for ordinary differential equations (6 CFU) - Secondo ciclo semestrale
- Topological methods in the global analysis (6 CFU)
- Probability (6 CFU) - Primo ciclo semestrale
- Operations research (6 CFU) - Secondo ciclo semestrale
- Dynamical systems (6 CFU) - Primo ciclo semestrale
- Mathematical statistics (6 CFU) - Secondo ciclo semestrale
- History of mathematics (6 CFU)
- Algebraic number theory 1 (6 CFU) - Secondo ciclo semestrale
- Field and galois theories (6 CFU)
- Coding theory and cryptography (6 CFU)
- Elementary number theory (6 CFU)
- Commutative algebra and algebraic computational geometry (6 CFU)
- Computational algebra a (6 CFU)
- Computational algebra b (6 CFU)
- Linear and multilinear algebra (6 CFU)
- Homological algebra (6 CFU)
- Higher algebra a (6 CFU) - Secondo ciclo semestrale
- Higher algebra b (6 CFU)
- Lie algebras and lie groups (6 CFU)
- Harmonic analysis (6 CFU) - Primo ciclo semestrale
- Convex analysis (6 CFU)
- Microlocal analysis (6 CFU)
- Non linear analysis (6 CFU)
- Variations calculus a (6 CFU)
- Variations calculus b (6 CFU)
- Cyclotomic fields (6 CFU)
- Functional analysis (6 CFU) - Primo ciclo semestrale
- Orbital determination (6 CFU)
- Hyperbolic dynamics (6 CFU) - Primo ciclo semestrale
- Holomorphic dynamics (6 CFU) - Primo ciclo semestrale
- Ordinary differential equations (6 CFU)
- Elliptic equations (6 CFU)
- Financial mathematics (6 CFU)
- Mathematical physics (6 CFU) - Secondo ciclo semestrale
- Principles of mathematics (6 CFU)
- Modular forms (6 CFU)
- Special functions (6 CFU)
- Geometry of metric spaces (6 CFU)
- Contact geometry (6 CFU)
- Complex differential geometry (6 CFU) - Secondo ciclo semestrale
- Geometry and topology of surfaces (6 CFU)
- Hyperbolic geometry (6 CFU) - Primo ciclo semestrale
- Real geometry a (6 CFU)
- Real geometry b (6 CFU)
- Real geometry c (6 CFU)
- Computational real geometry (6 CFU)
- Riemannian geometry (6 CFU) - Primo ciclo semestrale
- Symplectic geometry (6 CFU)
- Coxeter groups (6 CFU)
- Introduction to p-adic analysis (6 CFU)
- Discrete mathematics (6 CFU)
- Mathematics and music (6 CFU)
- Celestial mechanics (6 CFU)
- Continuous mechanics (6 CFU)
- Space mechanics (6 CFU)
- Higher mechanics (6 CFU) - Secondo ciclo semestrale
- Mathematical methods in cryptography (6 CFU)
- Numerical methods for graphics. (6 CFU)
- Topological methods for differential equations (6 CFU)
- Linear and nonlinear waves (6 CFU)
- Differential operators and index theorems (6 CFU)
- Origins and development of modern mathematics (6 CFU)
- Problem solving (6 CFU)
- Evolution problems (6 CFU)
- Discrete dynamical systems (6 CFU)
- Functional spaces (6 CFU)
- Symmetric spaces (6 CFU)
- History of ancient mathematics and its tradition (6 CFU)
- Minimal surfaces (6 CFU)
- Technologies for education (6 CFU)
- Algebraic number theory 2 (6 CFU)
- Analytic number theory a (6 CFU)
- Analytic number theory b (6 CFU)
- Coding theory (6 CFU)
- Automated control theory (6 CFU)
- Game theory (6 CFU) - Secondo ciclo semestrale
- Group theory (6 CFU)
- Model theory (6 CFU)
- Semigroup theory (6 CFU)
- Optimal control theory (6 CFU)
- Computability theory (6 CFU)
- Proof theory (6 CFU)
- Measure theory (6 CFU) - Primo ciclo semestrale
- Category theory (6 CFU) - Secondo ciclo semestrale
- Functions theory (6 CFU)
- Descriptive complexity theory (6 CFU)
- Ergodic theory (6 CFU)
- Geometric measure theory (6 CFU)
- Differential topology (6 CFU)
- Low-dimensional topology and geometry (6 CFU) - Secondo ciclo semestrale
- General topology (6 CFU)
- Ultrafilters and nonstandard methods (6 CFU)
- 2-manifolds (6 CFU)
- 3-manifolds (6 CFU)
- 4-manifolds (6 CFU)
- Physics III (6 CFU) - Secondo ciclo semestrale
- Physics lab for teaching (6 CFU)
- Calculation of elements in homogeneous groups (6 CFU) - Secondo ciclo semestrale
- Didactics of mathematics and new technologies (6 CFU) - Secondo ciclo semestrale
- Partial differential equations (6 CFU) - Secondo ciclo semestrale
- Mathematical analysis 3 (6 CFU) - Primo ciclo semestrale
- Geometric analysis (6 CFU)
- Analysis in metric spaces (6 CFU)
- Non-standard analysis (6 CFU)
- Real analysis (6 CFU)
- Nonlinear capacity, variational inequalities and applications (6 CFU)
- Partial differential equations 2 (6 CFU)
- Equations of fluid mechanics (6 CFU)
- Stochastic differential equations and applications (6 CFU)
- Hyperbolic equations (6 CFU)
- Parabolic equations (6 CFU)
- Mathematical models in biomedicine and mathematical physics (6 CFU) - Secondo ciclo semestrale
- Advanced probability (6 CFU)
- Rational mechanics (6 CFU) - Secondo ciclo semestrale
- Dynamics of the solar system (6 CFU) - Secondo ciclo semestrale
- Relativistic mechanics (6 CFU)
- Complements of mathematics education (6 CFU)
- Introduction to geometric measure theory (6 CFU)
- Operational research and communication and transport nets (6 CFU)
- Problems and methods in mathematics education research (6 CFU)
- Problems and methods in history of mathematics (6 CFU)
- Noncommutative algebra (6 CFU)
- Data analysis (6 CFU) - Secondo ciclo semestrale
- Applications of fluid dynamics in biomedicine (6 CFU)
- Applications of differential equations in biomedicine (6 CFU)
- Étale cohomology (6 CFU)
- Post-quantum cryptography (6 CFU)
- Elliptic curves (6 CFU)
- Linear algebraic groups (6 CFU)
- Algebraic number theory 3 (6 CFU)
- Knot theory a (6 CFU)
- Knot theory b (6 CFU)
- Algebraic topology b (6 CFU)
- Set theory a (6 CFU)
- Metodi di analisi armonica in analisi non lineare (6 CFU)
- Algebraic topology a (6 CFU) - Secondo ciclo semestrale
- Set theory b (6 CFU)
- Rappresentazioni di galois p-adiche (6 CFU)
- Spazi di sobolev (6 CFU)
- Metodi numerici per equazioni alle derivate parziali (6 CFU)
- Mathematical aspects in quantum computing (6 CFU) - Primo ciclo semestrale
- Algebraic combinatoris (6 CFU) - Primo ciclo semestrale
- Higher analysis a (6 CFU) - Secondo ciclo semestrale
- Higher analysis b (6 CFU) - Secondo ciclo semestrale
- Teorie in didattica della matematica (6 CFU)
- L functions (6 CFU)
Required
- Final proof (27 CFU)
Modaffint - II anno (18 CFU)
- Holomorphic functions and analytic sets (6 CFU)
- Complex analysis and geometry (6 CFU)
- Introduction to computational statistics (6 CFU)
- Laboratory for automatic verification of proofs (6 CFU)
- D-modules (6 CFU)
- Representation theory a (6 CFU)
- Pluripotential theory and positive currents (6 CFU)
- Rough paths analysis (6 CFU)
- Analysis on gaussian spaces (6 CFU)
- Mathematical aspects of reinforcement learning (6 CFU)
- Introduction to stochastic pdes (6 CFU)
- Stochastic optimization (6 CFU)
- Deep learning theory (6 CFU)
- Elements of representation theory (6 CFU)
- Nonlinear optimization (6 CFU)
- Categories in geometry (6 CFU)
- Complements of rational mechanics (6 CFU)
- Complex algebraic geometry (6 CFU)
- Toric geometry (6 CFU)
- Galois groups and fundamental groups (6 CFU)
- Mathematical methods of quantum mechanics (6 CFU)
- Numerical methods for model order reduction (6 CFU)
- Numerical methods for inverse problems (6 CFU)
- Numerical methods for matrix functions (6 CFU)
- Mathematical models and their numerical simulation (6 CFU)
- Numerical methods for markov chains and complex networks (6 CFU)
- Numerical methods for optimal control (6 CFU)
- Tensor numerical methods (6 CFU)
- Randomized algorithms for numerical linear algebra (6 CFU)
- Random dynamical systems (6 CFU)
- Algebraic surfaces (6 CFU)
- Riemann surfaces and algebraic curves (6 CFU)
- Scheme theory (6 CFU)
- Abelian varieties (6 CFU)
- Higher-dimensional algebraic varieties (5 CFU)
- Introduction to quantum mechanics (6 CFU)
- Algebra 1 (6 CFU)
- Algebra 2 (6 CFU)
- Algorithms and data structures (6 CFU)
- Scientific computing (6 CFU)
- Elements of computational algebra (6 CFU)
- Elements of complex analysis (6 CFU)
- Elements of calculus of variations (6 CFU)
- Elements of algebraic geometry (6 CFU)
- Elements of mathematical logic (6 CFU)
- Elements of celestial mechanics (6 CFU)
- Elements of probability and statistics (6 CFU)
- Elements of set theory (6 CFU)
- Elements of algebraic topology (6 CFU)
- Introduction to differential geometry and topology (6 CFU)
- Mathematical logic (6 CFU)
- Elementary mathematics from an advanced standpoint: arithmetic (6 CFU)
- Elementary mathematics from an advanced standpoint: geometry (6 CFU)
- Numerical methods for ordinary differential equations (6 CFU)
- Topological methods in the global analysis (6 CFU)
- Probability (6 CFU)
- Operations research (6 CFU)
- Dynamical systems (6 CFU)
- Mathematical statistics (6 CFU)
- History of mathematics (6 CFU)
- Algebraic number theory 1 (6 CFU)
- Field and galois theories (6 CFU)
- Coding theory and cryptography (6 CFU)
- Elementary number theory (6 CFU)
- Commutative algebra and algebraic computational geometry (6 CFU)
- Computational algebra a (6 CFU)
- Computational algebra b (6 CFU)
- Linear and multilinear algebra (6 CFU)
- Homological algebra (6 CFU)
- Higher algebra a (6 CFU)
- Higher algebra b (6 CFU)
- Lie algebras and lie groups (6 CFU)
- Harmonic analysis (6 CFU)
- Convex analysis (6 CFU)
- Microlocal analysis (6 CFU)
- Non linear analysis (6 CFU)
- Variations calculus a (6 CFU)
- Variations calculus b (6 CFU)
- Cyclotomic fields (6 CFU)
- Functional analysis (6 CFU)
- Orbital determination (6 CFU)
- Hyperbolic dynamics (6 CFU)
- Holomorphic dynamics (6 CFU)
- Ordinary differential equations (6 CFU)
- Elliptic equations (6 CFU)
- Financial mathematics (6 CFU)
- Mathematical physics (6 CFU)
- Principles of mathematics (6 CFU)
- Modular forms (6 CFU)
- Special functions (6 CFU)
- Geometry of metric spaces (6 CFU)
- Contact geometry (6 CFU)
- Complex differential geometry (6 CFU)
- Geometry and topology of surfaces (6 CFU)
- Hyperbolic geometry (6 CFU)
- Real geometry a (6 CFU)
- Real geometry b (6 CFU)
- Real geometry c (6 CFU)
- Computational real geometry (6 CFU)
- Riemannian geometry (6 CFU)
- Symplectic geometry (6 CFU)
- Coxeter groups (6 CFU)
- Introduction to p-adic analysis (6 CFU)
- Discrete mathematics (6 CFU)
- Mathematics and music (6 CFU)
- Celestial mechanics (6 CFU)
- Continuous mechanics (6 CFU)
- Space mechanics (6 CFU)
- Higher mechanics (6 CFU)
- Mathematical methods in cryptography (6 CFU)
- Numerical methods for graphics. (6 CFU)
- Topological methods for differential equations (6 CFU)
- Linear and nonlinear waves (6 CFU)
- Differential operators and index theorems (6 CFU)
- Origins and development of modern mathematics (6 CFU)
- Problem solving (6 CFU)
- Evolution problems (6 CFU)
- Discrete dynamical systems (6 CFU)
- Functional spaces (6 CFU)
- Symmetric spaces (6 CFU)
- History of ancient mathematics and its tradition (6 CFU)
- Minimal surfaces (6 CFU)
- Technologies for education (6 CFU)
- Algebraic number theory 2 (6 CFU)
- Analytic number theory a (6 CFU)
- Analytic number theory b (6 CFU)
- Coding theory (6 CFU)
- Automated control theory (6 CFU)
- Game theory (6 CFU)
- Group theory (6 CFU)
- Model theory (6 CFU)
- Semigroup theory (6 CFU)
- Optimal control theory (6 CFU)
- Computability theory (6 CFU)
- Proof theory (6 CFU)
- Measure theory (6 CFU)
- Category theory (6 CFU)
- Functions theory (6 CFU)
- Descriptive complexity theory (6 CFU)
- Ergodic theory (6 CFU)
- Geometric measure theory (6 CFU)
- Differential topology (6 CFU)
- Low-dimensional topology and geometry (6 CFU)
- General topology (6 CFU)
- Ultrafilters and nonstandard methods (6 CFU)
- 2-manifolds (6 CFU)
- 3-manifolds (6 CFU)
- 4-manifolds (6 CFU)
- Physics III (6 CFU)
- Physics lab for teaching (6 CFU)
- Calculation of elements in homogeneous groups (6 CFU)
- Didactics of mathematics and new technologies (6 CFU)
- Partial differential equations (6 CFU)
- Mathematical analysis 3 (6 CFU)
- Geometric analysis (6 CFU)
- Analysis in metric spaces (6 CFU)
- Non-standard analysis (6 CFU)
- Real analysis (6 CFU)
- Nonlinear capacity, variational inequalities and applications (6 CFU)
- Partial differential equations 2 (6 CFU)
- Equations of fluid mechanics (6 CFU)
- Stochastic differential equations and applications (6 CFU)
- Hyperbolic equations (6 CFU)
- Parabolic equations (6 CFU)
- Mathematical models in biomedicine and mathematical physics (6 CFU)
- Advanced probability (6 CFU)
- Rational mechanics (6 CFU)
- Dynamics of the solar system (6 CFU)
- Relativistic mechanics (6 CFU)
- Complements of mathematics education (6 CFU)
- Introduction to geometric measure theory (6 CFU)
- Operational research and communication and transport nets (6 CFU)
- Problems and methods in mathematics education research (6 CFU)
- Problems and methods in history of mathematics (6 CFU)
- Noncommutative algebra (6 CFU)
- Data analysis (6 CFU)
- Applications of fluid dynamics in biomedicine (6 CFU)
- Applications of differential equations in biomedicine (6 CFU)
- Étale cohomology (6 CFU)
- Post-quantum cryptography (6 CFU)
- Elliptic curves (6 CFU)
- Linear algebraic groups (6 CFU)
- Algebraic number theory 3 (6 CFU)
- Knot theory a (6 CFU)
- Knot theory b (6 CFU)
- Algebraic topology b (6 CFU)
- Set theory a (6 CFU)
- Metodi di analisi armonica in analisi non lineare (6 CFU)
- Algebraic topology a (6 CFU)
- Set theory b (6 CFU)
- Rappresentazioni di galois p-adiche (6 CFU)
- Spazi di sobolev (6 CFU)
- Metodi numerici per equazioni alle derivate parziali (6 CFU)
- Mathematical aspects in quantum computing (6 CFU)
- Algebraic combinatoris (6 CFU)
- Higher analysis a (6 CFU)
- Higher analysis b (6 CFU)
- Teorie in didattica della matematica (6 CFU)
- L functions (6 CFU)
Istfisnum - II anno (11 CFU)
- Istituzioni di analisi numerica (11 CFU)
- Istituzioni di fisica matematica (11 CFU)
Teorico
Required
- Algebra (11 CFU) - Primo ciclo semestrale
- Mathematics analysis (11 CFU) - Primo ciclo semestrale
Modaffint - i anno (6 CFU)
- Holomorphic functions and analytic sets (6 CFU)
- Complex analysis and geometry (6 CFU)
- Introduction to computational statistics (6 CFU)
- Laboratory for automatic verification of proofs (6 CFU)
- D-modules (6 CFU)
- Representation theory a (6 CFU) - Primo ciclo semestrale
- Pluripotential theory and positive currents (6 CFU)
- Rough paths analysis (6 CFU)
- Analysis on gaussian spaces (6 CFU)
- Mathematical aspects of reinforcement learning (6 CFU)
- Introduction to stochastic pdes (6 CFU)
- Stochastic optimization (6 CFU)
- Deep learning theory (6 CFU)
- Elements of representation theory (6 CFU) - Secondo ciclo semestrale
- Nonlinear optimization (6 CFU) - Primo ciclo semestrale
- Categories in geometry (6 CFU)
- Complements of rational mechanics (6 CFU) - Secondo ciclo semestrale
- Complex algebraic geometry (6 CFU) - Secondo ciclo semestrale
- Toric geometry (6 CFU)
- Galois groups and fundamental groups (6 CFU) - Primo ciclo semestrale
- Mathematical methods of quantum mechanics (6 CFU) - Secondo ciclo semestrale
- Numerical methods for model order reduction (6 CFU)
- Numerical methods for inverse problems (6 CFU) - Primo ciclo semestrale
- Numerical methods for matrix functions (6 CFU)
- Mathematical models and their numerical simulation (6 CFU)
- Numerical methods for markov chains and complex networks (6 CFU)
- Numerical methods for optimal control (6 CFU) - Secondo ciclo semestrale
- Tensor numerical methods (6 CFU) - Secondo ciclo semestrale
- Randomized algorithms for numerical linear algebra (6 CFU) - Primo ciclo semestrale
- Random dynamical systems (6 CFU) - Secondo ciclo semestrale
- Algebraic surfaces (6 CFU)
- Riemann surfaces and algebraic curves (6 CFU) - Secondo ciclo semestrale
- Scheme theory (6 CFU)
- Abelian varieties (6 CFU)
- Higher-dimensional algebraic varieties (5 CFU)
- Introduction to quantum mechanics (6 CFU)
- Algebra 1 (6 CFU)
- Algebra 2 (6 CFU) - Secondo ciclo semestrale
- Algorithms and data structures (6 CFU) - Secondo ciclo semestrale
- Scientific computing (6 CFU) - Primo ciclo semestrale
- Elements of computational algebra (6 CFU)
- Elements of complex analysis (6 CFU) - Secondo ciclo semestrale
- Elements of calculus of variations (6 CFU)
- Elements of algebraic geometry (6 CFU) - Primo ciclo semestrale
- Elements of mathematical logic (6 CFU)
- Elements of celestial mechanics (6 CFU) - Secondo ciclo semestrale
- Elements of probability and statistics (6 CFU) - Secondo ciclo semestrale
- Elements of set theory (6 CFU) - Secondo ciclo semestrale
- Elements of algebraic topology (6 CFU) - Primo ciclo semestrale
- Introduction to differential geometry and topology (6 CFU) - Primo ciclo semestrale
- Mathematical logic (6 CFU) - Secondo ciclo semestrale
- Elementary mathematics from an advanced standpoint: arithmetic (6 CFU)
- Elementary mathematics from an advanced standpoint: geometry (6 CFU) - Primo ciclo semestrale
- Numerical methods for ordinary differential equations (6 CFU) - Secondo ciclo semestrale
- Topological methods in the global analysis (6 CFU)
- Probability (6 CFU) - Primo ciclo semestrale
- Operations research (6 CFU) - Secondo ciclo semestrale
- Dynamical systems (6 CFU) - Primo ciclo semestrale
- Mathematical statistics (6 CFU) - Secondo ciclo semestrale
- History of mathematics (6 CFU)
- Algebraic number theory 1 (6 CFU) - Secondo ciclo semestrale
- Field and galois theories (6 CFU)
- Coding theory and cryptography (6 CFU)
- Elementary number theory (6 CFU)
- Commutative algebra and algebraic computational geometry (6 CFU)
- Computational algebra a (6 CFU)
- Computational algebra b (6 CFU)
- Linear and multilinear algebra (6 CFU)
- Homological algebra (6 CFU)
- Higher algebra a (6 CFU) - Secondo ciclo semestrale
- Higher algebra b (6 CFU)
- Lie algebras and lie groups (6 CFU)
- Harmonic analysis (6 CFU) - Primo ciclo semestrale
- Convex analysis (6 CFU)
- Microlocal analysis (6 CFU)
- Non linear analysis (6 CFU)
- Variations calculus a (6 CFU)
- Variations calculus b (6 CFU)
- Cyclotomic fields (6 CFU)
- Functional analysis (6 CFU) - Primo ciclo semestrale
- Orbital determination (6 CFU)
- Hyperbolic dynamics (6 CFU) - Primo ciclo semestrale
- Holomorphic dynamics (6 CFU) - Primo ciclo semestrale
- Ordinary differential equations (6 CFU)
- Elliptic equations (6 CFU)
- Financial mathematics (6 CFU)
- Mathematical physics (6 CFU) - Secondo ciclo semestrale
- Principles of mathematics (6 CFU)
- Modular forms (6 CFU)
- Special functions (6 CFU)
- Geometry of metric spaces (6 CFU)
- Contact geometry (6 CFU)
- Complex differential geometry (6 CFU) - Secondo ciclo semestrale
- Geometry and topology of surfaces (6 CFU)
- Hyperbolic geometry (6 CFU) - Primo ciclo semestrale
- Real geometry a (6 CFU)
- Real geometry b (6 CFU)
- Real geometry c (6 CFU)
- Computational real geometry (6 CFU)
- Riemannian geometry (6 CFU) - Primo ciclo semestrale
- Symplectic geometry (6 CFU)
- Coxeter groups (6 CFU)
- Introduction to p-adic analysis (6 CFU)
- Discrete mathematics (6 CFU)
- Mathematics and music (6 CFU)
- Celestial mechanics (6 CFU)
- Continuous mechanics (6 CFU)
- Space mechanics (6 CFU)
- Higher mechanics (6 CFU) - Secondo ciclo semestrale
- Mathematical methods in cryptography (6 CFU)
- Numerical methods for graphics. (6 CFU)
- Topological methods for differential equations (6 CFU)
- Linear and nonlinear waves (6 CFU)
- Differential operators and index theorems (6 CFU)
- Origins and development of modern mathematics (6 CFU)
- Problem solving (6 CFU)
- Evolution problems (6 CFU)
- Discrete dynamical systems (6 CFU)
- Functional spaces (6 CFU)
- Symmetric spaces (6 CFU)
- History of ancient mathematics and its tradition (6 CFU)
- Minimal surfaces (6 CFU)
- Technologies for education (6 CFU)
- Algebraic number theory 2 (6 CFU)
- Analytic number theory a (6 CFU)
- Analytic number theory b (6 CFU)
- Coding theory (6 CFU)
- Automated control theory (6 CFU)
- Game theory (6 CFU) - Secondo ciclo semestrale
- Group theory (6 CFU)
- Model theory (6 CFU)
- Semigroup theory (6 CFU)
- Optimal control theory (6 CFU)
- Computability theory (6 CFU)
- Proof theory (6 CFU)
- Measure theory (6 CFU) - Primo ciclo semestrale
- Category theory (6 CFU) - Secondo ciclo semestrale
- Functions theory (6 CFU)
- Descriptive complexity theory (6 CFU)
- Ergodic theory (6 CFU)
- Geometric measure theory (6 CFU)
- Differential topology (6 CFU)
- Low-dimensional topology and geometry (6 CFU) - Secondo ciclo semestrale
- General topology (6 CFU)
- Ultrafilters and nonstandard methods (6 CFU)
- 2-manifolds (6 CFU)
- 3-manifolds (6 CFU)
- 4-manifolds (6 CFU)
- Physics III (6 CFU) - Secondo ciclo semestrale
- Physics lab for teaching (6 CFU)
- Calculation of elements in homogeneous groups (6 CFU) - Secondo ciclo semestrale
- Didactics of mathematics and new technologies (6 CFU) - Secondo ciclo semestrale
- Partial differential equations (6 CFU) - Secondo ciclo semestrale
- Mathematical analysis 3 (6 CFU) - Primo ciclo semestrale
- Geometric analysis (6 CFU)
- Analysis in metric spaces (6 CFU)
- Non-standard analysis (6 CFU)
- Real analysis (6 CFU)
- Nonlinear capacity, variational inequalities and applications (6 CFU)
- Partial differential equations 2 (6 CFU)
- Equations of fluid mechanics (6 CFU)
- Stochastic differential equations and applications (6 CFU)
- Hyperbolic equations (6 CFU)
- Parabolic equations (6 CFU)
- Mathematical models in biomedicine and mathematical physics (6 CFU) - Secondo ciclo semestrale
- Advanced probability (6 CFU)
- Rational mechanics (6 CFU) - Secondo ciclo semestrale
- Dynamics of the solar system (6 CFU) - Secondo ciclo semestrale
- Relativistic mechanics (6 CFU)
- Complements of mathematics education (6 CFU)
- Introduction to geometric measure theory (6 CFU)
- Operational research and communication and transport nets (6 CFU)
- Problems and methods in mathematics education research (6 CFU)
- Problems and methods in history of mathematics (6 CFU)
- Noncommutative algebra (6 CFU)
- Data analysis (6 CFU) - Secondo ciclo semestrale
- Applications of fluid dynamics in biomedicine (6 CFU)
- Applications of differential equations in biomedicine (6 CFU)
- Étale cohomology (6 CFU)
- Post-quantum cryptography (6 CFU)
- Elliptic curves (6 CFU)
- Linear algebraic groups (6 CFU)
- Algebraic number theory 3 (6 CFU)
- Knot theory a (6 CFU)
- Knot theory b (6 CFU)
- Algebraic topology b (6 CFU)
- Set theory a (6 CFU)
- Metodi di analisi armonica in analisi non lineare (6 CFU)
- Algebraic topology a (6 CFU) - Secondo ciclo semestrale
- Set theory b (6 CFU)
- Rappresentazioni di galois p-adiche (6 CFU)
- Spazi di sobolev (6 CFU)
- Metodi numerici per equazioni alle derivate parziali (6 CFU)
- Mathematical aspects in quantum computing (6 CFU) - Primo ciclo semestrale
- Algebraic combinatoris (6 CFU) - Primo ciclo semestrale
- Higher analysis a (6 CFU) - Secondo ciclo semestrale
- Higher analysis b (6 CFU) - Secondo ciclo semestrale
- Teorie in didattica della matematica (6 CFU)
- L functions (6 CFU)
Required
- Final proof (27 CFU)
- Geometry (11 CFU)
Modaffint - II anno (18 CFU)
- Holomorphic functions and analytic sets (6 CFU)
- Complex analysis and geometry (6 CFU)
- Introduction to computational statistics (6 CFU)
- Laboratory for automatic verification of proofs (6 CFU)
- D-modules (6 CFU)
- Representation theory a (6 CFU)
- Pluripotential theory and positive currents (6 CFU)
- Rough paths analysis (6 CFU)
- Analysis on gaussian spaces (6 CFU)
- Mathematical aspects of reinforcement learning (6 CFU)
- Introduction to stochastic pdes (6 CFU)
- Stochastic optimization (6 CFU)
- Deep learning theory (6 CFU)
- Elements of representation theory (6 CFU)
- Nonlinear optimization (6 CFU)
- Categories in geometry (6 CFU)
- Complements of rational mechanics (6 CFU)
- Complex algebraic geometry (6 CFU)
- Toric geometry (6 CFU)
- Galois groups and fundamental groups (6 CFU)
- Mathematical methods of quantum mechanics (6 CFU)
- Numerical methods for model order reduction (6 CFU)
- Numerical methods for inverse problems (6 CFU)
- Numerical methods for matrix functions (6 CFU)
- Mathematical models and their numerical simulation (6 CFU)
- Numerical methods for markov chains and complex networks (6 CFU)
- Numerical methods for optimal control (6 CFU)
- Tensor numerical methods (6 CFU)
- Randomized algorithms for numerical linear algebra (6 CFU)
- Random dynamical systems (6 CFU)
- Algebraic surfaces (6 CFU)
- Riemann surfaces and algebraic curves (6 CFU)
- Scheme theory (6 CFU)
- Abelian varieties (6 CFU)
- Higher-dimensional algebraic varieties (5 CFU)
- Introduction to quantum mechanics (6 CFU)
- Algebra 1 (6 CFU)
- Algebra 2 (6 CFU)
- Algorithms and data structures (6 CFU)
- Scientific computing (6 CFU)
- Elements of computational algebra (6 CFU)
- Elements of complex analysis (6 CFU)
- Elements of calculus of variations (6 CFU)
- Elements of algebraic geometry (6 CFU)
- Elements of mathematical logic (6 CFU)
- Elements of celestial mechanics (6 CFU)
- Elements of probability and statistics (6 CFU)
- Elements of set theory (6 CFU)
- Elements of algebraic topology (6 CFU)
- Introduction to differential geometry and topology (6 CFU)
- Mathematical logic (6 CFU)
- Elementary mathematics from an advanced standpoint: arithmetic (6 CFU)
- Elementary mathematics from an advanced standpoint: geometry (6 CFU)
- Numerical methods for ordinary differential equations (6 CFU)
- Topological methods in the global analysis (6 CFU)
- Probability (6 CFU)
- Operations research (6 CFU)
- Dynamical systems (6 CFU)
- Mathematical statistics (6 CFU)
- History of mathematics (6 CFU)
- Algebraic number theory 1 (6 CFU)
- Field and galois theories (6 CFU)
- Coding theory and cryptography (6 CFU)
- Elementary number theory (6 CFU)
- Commutative algebra and algebraic computational geometry (6 CFU)
- Computational algebra a (6 CFU)
- Computational algebra b (6 CFU)
- Linear and multilinear algebra (6 CFU)
- Homological algebra (6 CFU)
- Higher algebra a (6 CFU)
- Higher algebra b (6 CFU)
- Lie algebras and lie groups (6 CFU)
- Harmonic analysis (6 CFU)
- Convex analysis (6 CFU)
- Microlocal analysis (6 CFU)
- Non linear analysis (6 CFU)
- Variations calculus a (6 CFU)
- Variations calculus b (6 CFU)
- Cyclotomic fields (6 CFU)
- Functional analysis (6 CFU)
- Orbital determination (6 CFU)
- Hyperbolic dynamics (6 CFU)
- Holomorphic dynamics (6 CFU)
- Ordinary differential equations (6 CFU)
- Elliptic equations (6 CFU)
- Financial mathematics (6 CFU)
- Mathematical physics (6 CFU)
- Principles of mathematics (6 CFU)
- Modular forms (6 CFU)
- Special functions (6 CFU)
- Geometry of metric spaces (6 CFU)
- Contact geometry (6 CFU)
- Complex differential geometry (6 CFU)
- Geometry and topology of surfaces (6 CFU)
- Hyperbolic geometry (6 CFU)
- Real geometry a (6 CFU)
- Real geometry b (6 CFU)
- Real geometry c (6 CFU)
- Computational real geometry (6 CFU)
- Riemannian geometry (6 CFU)
- Symplectic geometry (6 CFU)
- Coxeter groups (6 CFU)
- Introduction to p-adic analysis (6 CFU)
- Discrete mathematics (6 CFU)
- Mathematics and music (6 CFU)
- Celestial mechanics (6 CFU)
- Continuous mechanics (6 CFU)
- Space mechanics (6 CFU)
- Higher mechanics (6 CFU)
- Mathematical methods in cryptography (6 CFU)
- Numerical methods for graphics. (6 CFU)
- Topological methods for differential equations (6 CFU)
- Linear and nonlinear waves (6 CFU)
- Differential operators and index theorems (6 CFU)
- Origins and development of modern mathematics (6 CFU)
- Problem solving (6 CFU)
- Evolution problems (6 CFU)
- Discrete dynamical systems (6 CFU)
- Functional spaces (6 CFU)
- Symmetric spaces (6 CFU)
- History of ancient mathematics and its tradition (6 CFU)
- Minimal surfaces (6 CFU)
- Technologies for education (6 CFU)
- Algebraic number theory 2 (6 CFU)
- Analytic number theory a (6 CFU)
- Analytic number theory b (6 CFU)
- Coding theory (6 CFU)
- Automated control theory (6 CFU)
- Game theory (6 CFU)
- Group theory (6 CFU)
- Model theory (6 CFU)
- Semigroup theory (6 CFU)
- Optimal control theory (6 CFU)
- Computability theory (6 CFU)
- Proof theory (6 CFU)
- Measure theory (6 CFU)
- Category theory (6 CFU)
- Functions theory (6 CFU)
- Descriptive complexity theory (6 CFU)
- Ergodic theory (6 CFU)
- Geometric measure theory (6 CFU)
- Differential topology (6 CFU)
- Low-dimensional topology and geometry (6 CFU)
- General topology (6 CFU)
- Ultrafilters and nonstandard methods (6 CFU)
- 2-manifolds (6 CFU)
- 3-manifolds (6 CFU)
- 4-manifolds (6 CFU)
- Physics III (6 CFU)
- Physics lab for teaching (6 CFU)
- Calculation of elements in homogeneous groups (6 CFU)
- Didactics of mathematics and new technologies (6 CFU)
- Partial differential equations (6 CFU)
- Mathematical analysis 3 (6 CFU)
- Geometric analysis (6 CFU)
- Analysis in metric spaces (6 CFU)
- Non-standard analysis (6 CFU)
- Real analysis (6 CFU)
- Nonlinear capacity, variational inequalities and applications (6 CFU)
- Partial differential equations 2 (6 CFU)
- Equations of fluid mechanics (6 CFU)
- Stochastic differential equations and applications (6 CFU)
- Hyperbolic equations (6 CFU)
- Parabolic equations (6 CFU)
- Mathematical models in biomedicine and mathematical physics (6 CFU)
- Advanced probability (6 CFU)
- Rational mechanics (6 CFU)
- Dynamics of the solar system (6 CFU)
- Relativistic mechanics (6 CFU)
- Complements of mathematics education (6 CFU)
- Introduction to geometric measure theory (6 CFU)
- Operational research and communication and transport nets (6 CFU)
- Problems and methods in mathematics education research (6 CFU)
- Problems and methods in history of mathematics (6 CFU)
- Noncommutative algebra (6 CFU)
- Data analysis (6 CFU)
- Applications of fluid dynamics in biomedicine (6 CFU)
- Applications of differential equations in biomedicine (6 CFU)
- Étale cohomology (6 CFU)
- Post-quantum cryptography (6 CFU)
- Elliptic curves (6 CFU)
- Linear algebraic groups (6 CFU)
- Algebraic number theory 3 (6 CFU)
- Knot theory a (6 CFU)
- Knot theory b (6 CFU)
- Algebraic topology b (6 CFU)
- Set theory a (6 CFU)
- Metodi di analisi armonica in analisi non lineare (6 CFU)
- Algebraic topology a (6 CFU)
- Set theory b (6 CFU)
- Rappresentazioni di galois p-adiche (6 CFU)
- Spazi di sobolev (6 CFU)
- Metodi numerici per equazioni alle derivate parziali (6 CFU)
- Mathematical aspects in quantum computing (6 CFU)
- Algebraic combinatoris (6 CFU)
- Higher analysis a (6 CFU)
- Higher analysis b (6 CFU)
- Teorie in didattica della matematica (6 CFU)
- L functions (6 CFU)
Comune
Other
- Numerical analysis with laboratory (9 CFU) - Primo ciclo semestrale
- Programming languages and laboratory (9 CFU) - Primo ciclo semestrale
- Teaching experiences in secondary school (6 CFU)
- Physics 2 - electromagnetism (9 CFU) - Primo ciclo semestrale
- Geometry 2 (12 CFU) - Ciclo annuale unico
- Free training activity (6 CFU)
- Mathematical analysis 2 (12 CFU) - Ciclo annuale unico
- Training (3 CFU)
- Apprenticeship/stage (extended) (6 CFU)
Career opportunities
- Companies and firms in application, scientific, industrial, and business areas
- Services
- Public administration bodies
- Multimedia communication and information.
Enrolment
Content in ItalianPer iscriversi occorre essere in possesso:
- di un titolo di studio universitario riconosciuto idoneo dalla normativa vigente
- dei requisiti curriculari stabiliti dal regolamento del corso di studio
- dell’adeguata personale preparazione, accertata secondo le modalità definite nel regolamento del singolo corso di studio.