

▶

Informazioni generali sul Corso di Studi

Università	Università di PISA
Nome del corso in italiano	INGEGNERIA PER IL DESIGN INDUSTRIALE (IdSua:1616622)
Nome del corso in inglese	Engineering for the Industrial Design
Classe	L-4 R - Disegno industriale & L-9 R - Ingegneria industriale
Lingua in cui si tiene il corso	italiano
Eventuale indirizzo internet del corso di laurea	http://design.ing.unipi.it/
Tasse	Pdf inserito: visualizza
Modalità di svolgimento	a. Corso di studio convenzionale

Þ

Referenti e Strutture

Presidente (o Referente o Coordinatore) del CdS	RAZIONALE Armando Viviano
Organo Collegiale di gestione del corso di studio	CONSIGLIO DI CORSO DI STUDIO
Struttura didattica di riferimento	INGEGNERIA CIVILE E INDUSTRIALE (Dipartimento Legge 240)

Docenti di Riferimento

N.	COGNOME	NOME	SETTORE	QUALIFICA	PESO	TIPO SSD
1.	ARTONI	Alessio		PA	1	
2.	ARUANNO	Beatrice		RD	1	

3.	BARONE	Sandro		РО	0,5	
4.	BERTONCINI SABATINI	Paolo		PA	0,5	
5.	BEVILACQUA	Marco Giorgi	0	РО	0,5	
6.	CAPRILI	Silvia		PA	0,5	
7.	DASTOLI	Caterina		RD	1	
8.	GORETTI	Gabriele		PA	1	
9.	LANZETTA	Michele		PA	1	
10.	TAMBURRINO	Francesco		RD	1	
11.	ZERBINO	Pierluigi		RD	1	
Rapp	resentanti Studenti		Matteelli Giulia g.m	atteelli@stude	enti.unipi.it	
			MARCO GIORGIO BEVILACQUA GABRIELE GORETTI			
Gruppo di gestione AQ			GIULIA MATTEELLI FRANCESCA NANNELLI			
			ARMANDO VIVIANO RAZIONALE FRANCESCO TAMBURRINO			
Futor			Armando Viviano RAZIONALE			

Matteo CHIEGO

•

Tutor

Il Corso di Studio in breve

29/05/2025

Il Corso di Laurea triennale interclasse in Ingegneria per il Design Industriale si propone di formare una figura professionale caratterizzata da una solida preparazione culturale nelle discipline dell'ingegneria industriale e del design industriale. Il Corso si propone di creare professionisti in grado di gestire autonomamente il processo di sviluppo di prodotti industriali, dalla fase concettuale e di ideazione alle fasi di progettazione, test, produzione e post-produzione, e caratterizzate dalla capacità di relazionarsi con molteplici esperti in diverse aree, e di affrontare la crescente complessità di sistemi e prodotti attuali e futuri. Il laureato in Ingegneria per il Design Industriale possiede competenze teoriche ed operative che gli consentono di soddisfare efficacemente le richieste del mondo produttivo ed industriale moderno, dove le soluzioni progettuali necessitano di competenze multi e inter-disciplinari. La creatività nel design che contraddistingue l'eccellenza del Made-in-Italy si integra con le competenze più propriamente ingegneristiche, applicate nella creazione di prodotti caratterizzati da un connubio di estetica e funzionalità. Il Corso prevede di fornire un'ampia gamma di competenze progettuali e ingegneristiche, che comprendono: tecniche di progettazione industriale (metodi per l'acquisizione dei requisiti utente, inclusi i bisogni e gli aspetti sociali, per la definizione delle specifiche delle funzionalità del prodotto, di progettazione centrata sull'utente, progettazione sostenibile di prodotti e processi, eco-design), progettazione di sistemi ingegneristici multi-disciplinari, ingegneria meccanica, ingegneria di produzione, innovazione aziendale, innovazione sistematica e virtualizzazione di prodotti e processi. Si tratta pertanto di un percorso multidisciplinare articolato che risponde a una domanda di formazione trasversale, espressa dall'industria dei beni di consumo e dei beni durevoli, dagli studi e dalle società di progettazione, nonché dai diversi settori della commercializzazione e distribuzione.

QUADRO A1.a

Consultazione con le organizzazioni rappresentative - a livello nazionale e internazionale - della produzione di beni e servizi, delle professioni (Istituzione del corso)

05/04/2019

Il corso di studi ha preventivamente consultato aziende del territorio toscano operanti in settori caratterizzati dal connubio tra design e ingegneria industriale, le quali hanno espresso interesse nella figura professionale che verrà formata dal corso di Laurea in Ingegneria per il Design Industriale: Piaggio (Riferimento: Responsabile Centro Stile), ARIETE (Riferimento: Responsabile Ufficio Tecnico), Tosti (Riferimento: Amministratore Delegato), MAC Design (Riferimento: Amministratore Delegato).

Il corso di studi ha preventivamente consultato le seguenti organizzazioni: Unione Industriale Pisana (Riferimento: Vice Presidente), Fondazione Cassa di Risparmio di Lucca (Riferimento: Presidente), Fondazione Lucchese per l'Alta Formazione e la Ricerca (riferimento: Presidente), Confindustria Toscana Nord (Riferimento: Presidente), ADI (Associazione Disegno Industriale, Riferimento: Delegato Regione Toscana), al fine di avere una connessione diretta e continua con il mondo del lavoro del territorio locale. Scopo della consultazione è quello di comunicare le finalità dell'offerta formativa proposta, instaurare una collaborazione per individuare il mutamento e monitorare le conoscenze, capacità e professionalità da raggiungere con il corso di laurea. Le organizzazioni consultate si impegnano a individuare aziende operanti in settori di interesse del piano di studi che sono invitate a partecipare a momenti di confronto annuali per verificare la coerenza tra il profilo professionale atteso e i risultati dell'apprendimento, a proporre tematiche e brief progettuali nel laboratorio di design del progetto industriale previsto al terzo anno e ad ospitare studenti per il periodo di tirocinio presso le aziende previsto dal percorso formativo.

La presentazione collettiva è avvenuta in data 10 settembre 2018. Le consultazioni individuali si sono svolte durante la fase di stesura del progetto, nel periodo settembre-novembre 2018 attraverso contatti telefonici e teleconferenze. Nell'ambito di tali incontri, sono stati illustrati gli obiettivi formativi e la figura professionale. I rappresentanti delle parti sociali hanno valutato positivamente gli obiettivi formativi e gli sbocchi professionali ritenendoli in linea con le attuali esigenze del mercato del lavoro.

QUADRO A1.b

Consultazione con le organizzazioni rappresentative - a livello nazionale e internazionale - della produzione di beni e servizi, delle professioni (Consultazioni successive)

25/05/2022

La consultazione dei laureati in uscita non è ancora stata effettuata poiché il Corso è stato istituito da tre anni e non ci sono stati ancora laureati.

Per il momento, è stata avviata un'attività di coordinamento dei tirocini aziendali tesa da un lato ad incrementare le aziende potenzialmente interessate per ampliare l'offerta formativa in tal senso e dall'altro a raccogliere i feedback dalle aziende che hanno già ospitato gli studenti del Corso di Studio con particolare riferimento alla preparazione degli studenti in relazione alle attività oggetto del tirocinio. È stata individuato il Dott. Francesco Tamburrino come docente coordinatore delle attività di tirocinio.

Per le prossime attività di consultazione, sarà istituita una Commissione Rapporti Esterni che avrà il compito di individuare tutti i potenziali stakeholders della figura professionale prodotto del Corso di Studio, di raccogliere da loro i feedback, di analizzare l'offerta formativa in funzione dei suggerimenti raccolti e di avanzare eventuali proposte di arricchimento

dell'offerta formativa stessa. Le proposte potranno riguardare i contenuti di alcuni insegnamenti, l'inserimento di nuove attività a scelta dello studente, la promozione di seminari e workshop, che coinvolgano direttamente gli stakeholders.

Profilo professionale e sbocchi occupazionali e professionali previsti per i laureati

Progettista di Prodotto

funzione in un contesto di lavoro:

Il laureato in Ingegneria per il Design Industriale detiene competenze professionalizzanti, caratterizzate da una visione globale del prodotto, capace di gestire in proprio o di coordinare l'intero ciclo di progettazione, produzione, diffusione commerciale e dismissione di un prodotto.

competenze associate alla funzione:

Il corso fornisce una solida formazione di base della progettazione di prodotto, sia a livello teorico che operativo. In particolare, al termine del percorso formativo i laureati conosceranno: le metodologie fondamentali per operare con competenza in tutte le fasi esecutive del progetto di prodotti industriali; gli aspetti storici relativi alla cultura del progetto e all'evoluzione del design di prodotto; gli strumenti per la rappresentazione estetica e funzionale del prodotto (dal disegno manuale al disegno tecnico e alla realizzazione tridimensionale di prototipi); i fondamenti scientifici e tecnologici relativi ai materiali, alle loro caratteristiche chimico-fisiche, alle tecnologie di trasformazione; gli aspetti economici relativi ai contesti aziendali e ai mercati, unitamente all'analisi di fattibilità economica dei prodotti.

sbocchi occupazionali:

I possibili sbocchi professionali per un laureato in Ingegneria per il Design Industriale sono molteplici, tra i quali: industrie che progettano e producono prodotti industriali e beni di consumo ad alto contenuto di stile e tecnologico, come ad esempio aziende nel settore dei trasporti, del bianco, dell'arredo; industrie meccaniche ed elettromeccaniche; studi di design; imprese industriali per la produzione di beni e servizi; ruoli tecnici negli enti statali e nelle amministrazioni locali, enti ed aziende che operano nel settore della formazione tecnica; società di consulenza; libera professione. Gli studenti che optano per la classe L9 hanno la possibilità di partecipare all'esame di stato per acquisire la qualifica di ingegnere junior.

Il corso prepara alla professione di (codifiche ISTAT)

- 1. Tecnici della produzione manifatturiera (3.1.5.3.0)
- 2. Disegnatori tecnici (3.1.3.7.1)

05/04/2019

Per essere ammessi al Corso di laurea in Ingegneria per il Design Industriale occorre essere in possesso di un diploma di scuola secondaria superiore, o altro titolo conseguito all'estero riconosciuto idoneo in base alla normativa vigente. Le conoscenze di base necessarie per accedere al corso di laurea triennale riguardano principalmente la lingua italiana e la matematica, meglio se supportate dalla conoscenza della lingua inglese e dell'informatica. L'istruzione acquisita nell'ambito della scuola secondaria superiore deve aver fornito lo sviluppo della capacità di comprensione lessicale e dei testi, dell'abilità di ragionamento logico e di comprensione, della capacità del ragionamento quantitativo. Le modalità di verifica del possesso di tali conoscenze sono descritte nel Regolamento Didattico del corso di studio, dove sono altresì indicati gli obblighi formativi aggiuntivi previsti nel caso in cui la verifica non sia positiva.

Modalità di ammissione

11/05/2021

L'accesso al primo anno del Corso di Laurea Triennale in Ingegneria per il Design Industriale è a numero programmato locale fissato a n. 50. Trattandosi di un Corso di Laurea ad accesso programmato per immatricolarsi è necessario partecipare ad una selezione, definita nelle forme e nei modi attraverso apposito bando Rettorale, pubblicato sul sito dell'Ateneo. Per quanto riguarda le modalità di verifica delle adeguate conoscenze nei settori propedeutici indispensabili a una proficua fruizione degli studi di Ingegneria, con riferimento particolare alle aree della Matematica, della Fisica e della Chimica, il Corso di studio aderisce al sistema dei test approntati a livello nazionale, in coordinamento con la Scuola di Ingegneria dell'Università di Pisa e con gli altri corsi di Ingegneria e Architettura, dal Consorzio Interuniversitario Sistemi Integrati per l'accesso (C.I.S.I.A.). Le modalità di attribuzione, in caso di mancato superamento del test, degli Obblighi Formativi Aggiuntivi (OFA) sono riportati nel 'Regolamento sull'accesso agli studi ai Corsi di Laurea coordinati dalla Scuola di Ingegneria dell'Università di Pisa' (www.ing.unipi.it).

Obiettivi formativi specifici del Corso e descrizione del percorso formativo

05/04/2019

Il corso di laurea in Ingegneria per il Design Industriale ha l'obiettivo di formare un Progettista di Prodotto, in grado di sostenere tutte le attività che portano un prodotto dalla fase di ideazione a quella della produzione e distribuzione sul mercato.

Nella preparazione del laureato in Ingegneria per il Design Industriale costituisce un obiettivo fondamentale la padronanza degli elementi culturali, scientifici, metodologici e tecnico-strumentali che sono alla base della cultura del progetto di prodotto. Al Progettista di Prodotto viene richiesta capacità di creazione e sviluppo di un'idea progettuale, in tutte le diverse fasi del processo: dalla ricerca e definizione del problema, all'elaborazione del concept, fino al progetto esecutivo.

Sono pertanto considerate abilità indispensabili sia la padronanza di strumenti e tecniche relative alla rappresentazione (dal disegno manuale alla rappresentazione e modellazione digitale) sia quella dei linguaggi necessari a comunicare in modo adeguato l'idea. La Laurea in Ingegneria per il Design Industriale ha una connotazione professionale. Il laureato è capace di operare in tutte le fasi del processo perché ne conosce i linguaggi e le necessità, e ha sviluppato abilità nel valutare gli aspetti tecnologici, materici e produttivi, declinandoli in termini di sostenibilità socioeconomica, ambientale, e di coerenza normativa.

Nel percorso formativo di laurea, le principali aree disciplinari sono:

- 1. Ambito della cultura del progetto (SSD ICAR/13). Obiettivo di questo ambito disciplinare è quello di fornire allo studente la conoscenza di metodi per l'analisi e la definizione del concept, inquadrare il contesto in termini di opportunità e vincoli, studiare le diverse possibilità, definire le priorità, considerare l'interazione con l'utente, valutare prodotti e sistemi nelle loro varie caratteristiche. Inoltre, le conoscenze acquisite durante il corso di laurea confluiscono nello sviluppo di un progetto che evidenzi le capacità di tradurre i bisogni in requisiti di prodotto e di scegliere, in base alle prestazioni attese, i materiali e le parti componenti. Queste capacità si svilupperanno tramite modalità didattiche di tipo laboratoriale dando concretezza agli insegnamenti impartiti in forma di lezioni teoriche.
- 2. Ambito delle discipline storico-critiche (SSD ICAR/13, ICAR/18). Obiettivo formativo di quest'area disciplinare è utilizzare il metodo storico per adeguare il progetto nel suo contesto di riferimento. Le materie di studio presentano l'evoluzione della cultura del progetto posta in relazione con lo sviluppo del linguaggio artistico, della comunicazione visiva, del design.
- 3. Ambito delle culture visive, della rappresentazione e del disegno tecnico (SSD ICAR/13, ICAR/17, ING-IND/15). L'obiettivo formativo è quello di creare una padronanza nell'espressione visiva e nella traduzione in immagini degli elementi di analisi e sintesi progettuale. Oggetto di studio sono pertanto i linguaggi, gli strumenti e le tecniche relativi alla rappresentazione morfologica, materica e funzionale del prodotto (dal disegno manuale alla rappresentazione digitale, dalla produzione di modelli di studio e prototipi, alla modellazione digitale).
- 4. Ambito delle tecnologie costruttive, dei materiali e di lavorazione (SSD ING-IND/13-14-15-16). Obiettivo formativo è creare una competenza relativa alla scelta dei materiali in funzione dei contesti d'uso, delle prestazioni richieste, dei vincoli di produzione, dei requisiti normativi. Rientrano in quest'area disciplinare la conoscenza dei materiali; gli studi delle tecnologie industriali di lavorazione e trasformazione; la competenza sui metodi di progettazione di sistemi industriali, sull'analisi e simulazione di cinematismi e sulla verifica del comportamento strutturale di componenti di prodotto.

 5. Ambito della cultura economica della conoscenza d'impresa e di fattibilità economica del progetto (SSD ING-IND/35, ICAR/13). Obiettivo di quest'ambito è rendere manifesti tutti gli elementi che determinano coerenza d'impresa nei processi di innovazione guidata dal design. Vengono pertanto presi in esame i sistemi economici, i contesti aziendali, i mercati e le problematiche relative al marketing; un approfondimento è dedicato all'analisi di fattibilità economica.

 All'interno del Corso di Studio possono venire proposti ulteriori percorsi di approfondimento tematico o perché considerati attinenti alle nuove frontiere di sviluppo per le professioni progettuali o perché attivi in settori determinanti dello sviluppo economico nazionale.

Il primo anno è dedicato agli studi delle materie di base (Matematica, Fisica, Disegno) e all'acquisizione delle competenze scientifiche e tecnologiche relative ai materiali, alle loro caratteristiche chimico-fisiche e alle relative tecnologie di transformazione

Il secondo anno è dedicato all'acquisizione di solide conoscenze dell'ingegneria industriale e del disegno industriale, di abilità nell'uso di strumenti e tecnologie attraverso attività laboratoriali multi-disciplinari e includono un Laboratorio di fondamenti del progetto realizzato in collaborazione con realtà industriali.

Il terzo anno prevede attività di progettazione di prodotto, in cui gli studenti possono applicare le conoscenze e competenze relative a una varietà di discipline dell'Ingegneria e del Design Industriale, che comprendono l'ingegneria meccanica e dei materiali, il disegno industriale, la sostenibilità e il marketing. L'attività didattica è basata sull'alternanza di lezioni teoriche, esercitazioni e progetti pratici.

Al termine del programma formativo lo studente dovrà essere in grado di conoscere e comprendere i principali aspetti culturali, tematici e problematici che caratterizzano i campi dell'ingegneria industriale e del disegno industriale, al fine di gestire autonomamente il processo di sviluppo di prodotti industriali, dalla fase concettuale e di ideazione alle fasi di progettazione, test, produzione e post-produzione.

Conoscenza e capacità di comprensione In particolare, lo studente dovrà aver acquisito e compreso la conoscenza dei fondamenti, dei metodi e degli strumenti dell'analisi matematica, della fisica e della geometria; dei concetti di base, dei metodi e degli strumenti della meccanica applicata e della scienza delle costruzioni, e degli elementi costruttivi del prodotto industriale; dei concetti di base della chimica e delle proprietà fondamentali dei materiali; le conoscenze teorico-pratiche necessarie per rappresentare la forma di un prodotto; la conoscenza delle tecnologie e dei processi di produzione; la conoscenza dei metodi e delle più moderne tecnologie per la prototipazione virtuale e fisica di prodotti; la conoscenza della strategia ed economia del progetto; gli strumenti storici necessari per comprendere il design e la tecnica. L'acquisizione di queste conoscenze e competenze avviene attraverso lezioni frontali ed esercitazione degli insegnamenti di base dell'ingegneria e del progetto, degli insegnamenti caratterizzanti l'ingegneria meccanica e la formazione tecnologica del design, le attività laboratoriali multi-disciplinari previste nei laboratori di secondo e terzo anno, ed il progetto finale (tirocinio curriculare e prova finale).

La verifica dell'avvenuta acquisizione è effettuata tramite esami (prove scritte e/o orali), tramite la valutazione delle attività svolte nei laboratori e delle attività progettuali, e la valutazione del progetto finale.

Capacità di applicare conoscenza e comprensione

Al termine del programma formativo lo studente dovrà essere capace di applicare le conoscenze acquisite in una attività progettuale da svolgersi in autonomia o in team, in vari campi applicativi. Lo studente dovrà essere in grado di dimostrare capacità di analisi, supportata da adeguate metodologie, per impostare e risolvere problemi progettuali nel settore dell'ingegneria; comprendere e comunicare attraverso opportuni metodi il progetto nelle sue specificità del design e dell'ingegneria; saper applicare metodologie appropriate nel processo di sviluppo di un nuovo prodotto; saper integrare nel progetto le conoscenze relative alle caratteristiche meccaniche, fisiche e chimiche dei materiali.

L'acquisizione di capacità di applicare conoscenza e comprensione avviene attraverso le esercitazioni previste negli insegnamenti di base dell'ingegneria e del progetto, e degli insegnamenti caratterizzanti l'ingegneria meccanica e la formazione tecnologica del design, le attività di laboratorio multi-disciplinari previste nei laboratori di secondo e terzo anno, e lo sviluppo di progetti in autonomia o in team.

La verifica dell'avvenuta acquisizione è effettuata tramitela la valutazione delle attività svolte durante le esercitazioni e nei laboratori, e lo sviluppo di attività progettuali ed i corrispondenti esami (prove pratiche).

Conoscenza e comprensione, e Capacità di applicare conoscenza e comprensione: Dettaglio

INSEGNAMENTI SCIENTIFICI DI BASE

Conoscenza e comprensione

Gli insegnamenti dell'ambito disciplinare di base si prefiggono di fornire agli studenti le capacità logiche per svolgere forme di ragionamento astratto, osservando criteri di rigore e correttezza formale e applicarli a problemi del mondo reale. Al contempo le discipline matematiche forniscono il linguaggio e i modelli per la comprensione rigorosa della realtà. Gli insegnamenti di area fisica e chimica vengono svolti con un approccio teorico, finalizzato a fornire agli studenti le conoscenze necessarie a comprendere i principi operativi dei materiali e delle tecnologie.

Capacità di applicare conoscenza e comprensione

La conoscenza e la comprensione teorica sono rese operative attraverso la capacità di applicare le competenze nella risoluzione di ampie classi di problemi che generalizzano situazioni del mondo reale, sia naturale che artificiale e industriale.

I metodi di verifica della acquisizione delle conoscenze e delle relative competenze di applicazione consistono in:
(a) svolgimento di prove scritte, che includono esercizi con risultato unico (generalmente in forma chiusa) e domande aperte:

(b) svolgimento di prove orali, finalizzate alla verifica della padronanza delle conoscenze di base e delle principali applicazioni.

Le conoscenze e capacità sono conseguite e verificate nelle seguenti attività formative:

679AA ANALISI MATEMATICA 12 cfu 202BB FISICA GENERALE 6 cfu 431AA GEOMETRIA 6 cfu 325CC TECNOLOGIA DEI MATERIALI E CHIMICA APPLICATA 6 cfu

Le conoscenze e capacità sono conseguite e verificate nelle seguenti attività formative:

INGEGNERIA INDUSTRIALE

Conoscenza e comprensione

Gli insegnamenti nell'ambito disciplinare dell'ingegneria industriale si prefiggono di fornire agli studenti la conoscenza della teoria, dei metodi e degli strumenti ingegneristici. In particolare, sono affrontate le discipline della meccanica di base e applicata, delle tecnologie di produzione e prototipazione, della scienza delle costruzioni e degli elementi costruttivi del prodotto industriale. La comprensione di questi argomenti è necessaria per trattare con successo gli aspetti tecnici legati ai processi di progettazione e produzione del prodotto industriale, e consente di selezionare le soluzioni tecnologiche ed ingegneristiche più adatte ad essi. Tra gli aspetti più specifici del Corso di Studio sono da evidenziare la conoscenza dei metodi e delle più moderne tecnologie per la prototipazione virtuale e fisica dei prodotti, necessari per condurre test di validazione di aspetti estetici, funzionali, ed ergonomici già durante la fase di progettazione e la conoscenza della strategia ed economia del progetto, per comprendere come l'innovazione progettata impatta sulle dinamiche aziendali.

Capacità di applicare conoscenza e comprensione

Lo studente dovrà essere in grado di dimostrare capacità di analisi, supportata da adeguate metodologie, per impostare e risolvere problemi progettuali nell'ambito dell'ingegneria industriale e dovrà saper integrare nel progetto le conoscenze relative alle caratteristiche meccaniche, fisiche e chimiche dei materiali per sperimentare nuove configurazioni e applicazioni nel prodotto. I metodi di verifica della acquisizione delle conoscenze e delle relative competenze di applicazione consistono in:

- (a) svolgimento di prove scritte, che possono includere esercizi con risultato unico (generalmente in forma chiusa) e domande aperte;
- (b) svolgimento di prove orali, finalizzate alla verifica della padronanza delle conoscenze di base e delle principali applicazioni;
- (c) sviluppo di progetti individuali o in gruppi, che possono includere diverse fasi del ciclo di progettazione e produzione dei prodotti industriali.

Le conoscenze e capacità sono conseguite e verificate nelle seguenti attività formative:

433AA MECCANICA RAZIONALE 6 CFU
868II FONDAMENTI DI MECCANICA APPLICATA 9 CFU
256HH SCIENZA DELLE COSTRUZIONI 6 CFU
872II TECNOLOGIE DI PRODUZIONE 6 CFU
867II ELEMENTI COSTRUTTIVI DEL PRODOTTO INDUSTRIALE 9 CFU
870II PROTOTIPAZIONE VIRTUALE E FISICA 6 CFU
871II STRATEGIA ED ECONOMIA DEL PROGETTO 9 CFU
0010H FORME STRUTTURALI PER IL DESIGN 6 CFU

Le conoscenze e capacità sono conseguite e verificate nelle seguenti attività formative:

DISEGNO INDUSTRIALE

Conoscenza e comprensione

Gli insegnamenti di questa area di apprendimento hanno l'obbiettivo di fornire agli studenti la conoscenza della teoria, dei metodi e degli strumenti tecnologici specifici dell'ambito disciplinare del disegno industriale. In dettaglio, saranno fornite le conoscenze teorico-pratiche necessarie per rappresentare la forma di un prodotto, sia solido che superficiale, nelle sue parti costitutive e nella sua interezza, sia a livello di rappresentazione grafica sia tecnica, ed utilizzando strumenti digitali bi e tri-dimensionali. Saranno, inoltre, fornite competenze sui materiali legati al prodotto industriale e alle relative tecnologie e processi di produzione per comprendere come la scelta ed i vincoli di una tecnologia produttiva si ripercuotano sulle scelte progettuali. Infine, saranno approfonditi gli aspetti storici legati al disegno industriale necessari per comprendere il design e la tecnica al fine di relazionare tali conoscenze alle linee evolutive del design industriale, nelle sue varie forme di applicazione.

Capacità di applicare conoscenza e comprensione

Lo studente dovrà saper applicare le metodologie appropriate nel processo di sviluppo di un nuovo prodotto per rispondere, attraverso soluzioni progettuali innovative, dal punto di vista estetico, funzionale, ergonomico, d'uso, tecnico, e dei materiali, a nuove esigenze di mercato. I metodi di verifica delle competenze acquisite e la loro applicazione consistono in:

- (a) svolgimento di prove scritte, che possono includere esercizi con risultato unico (generalmente in forma chiusa) e domande aperte;
- (b) svolgimento di prove orali, finalizzate alla verifica della padronanza delle conoscenze di base e delle principali applicazioni;
- (c) sviluppo di progetti individuali o in gruppi, che possono includere diverse fasi del ciclo di progettazione e produzione dei prodotti industriali applicabili direttamente nelle attività di laboratorio.

Le conoscenze e capacità sono conseguite e verificate nelle seguenti attività formative:

0005H CRITERI E METODI PER LA SELEZIONE DEI MATERIALI PER I PRODOTTI INDUSTRIALI 12 CFU

257HH STORIA DEL DESIGN E DELLA TECNICA 6 CFU

0002H LABORATORIO DI FONDAMENTI DEL PROGETTO I 6 CFU

0003H LABORATORIO DI FONDAMENTI DEL PROGETTO II 15 CFU

0004H DESIGN PER L'ECONOMIA CIRCOLARE 6 CFU

249HH LABORATORIO DI DESIGN DEL PRODOTTO INDUSTRIALE 12 CFU

251HH LABORATORIO DI RAPPRESENTAZIONE 12 CFU

Le conoscenze e capacità sono conseguite e verificate nelle seguenti attività formative:

Autonomia di giudizio
Abilità comunicative
Capacità di apprendimento

Al termine del programma formativo lo studente dovrà aver acquisito:

La capacità di raccogliere e interpretare i dati riguardanti un progetto senza condizionamenti esterni, e la propensione a confrontare le proprie valutazioni con quelle espresse dai componenti del team progettuale, in un processo di sviluppo dell'idea progettuale;

Autonomia di giudizio

- La capacità di analisi critica dei principali fattori di innovazione e delle loro implicazioni sul processo di progettazione;
- La capacità di integrare e sintetizzare nel progetto idee, soluzioni creative, innovazioni di prodotto, di processo, e di materiali che anticipino le domande del mercato.

L'acquisizione di queste competenze avviene attraverso le attività laboratoriali multi-disciplinari previste nei laboratori di secondo e terzo anno, ed il progetto finale (tirocinio curriculare e prova finale).

La verifica dell'avvenuta acquisizione è effettuata tramite la valutazione delle attività svolte nei laboratori, i corrispondenti esami, e la valutazione del progetto finale.

Abilità comunicative

Al termine del programma formativo lo studente dovrà saper comunicare idee, informazioni, soluzioni e problemi a interlocutori specialisti ed anche ad un pubblico generico, attraverso adeguati strumenti comunicativi. In particolare lo studente dovrà essere in grado di:

- Saper usare efficacemente le tecniche grafiche, del disegno tecnico, della modellazione tridimensionale, della prototipazione virtuale e fisica al fine di comunicare in modo puntuale ed efficace il progetto;
- Saper presentare anche ad un pubblico non tecnico il progetto sia in fase di sviluppo che nella sua forma finale, mediante appropriate tecniche digitali;
- Saper utilizzare il proprio know-how tecnico-scientifico nell'ambito di team di lavoro multidisciplinari, avvalendosi di tutti gli strumenti di comunicazione e

sintesi progettuale acquisiti nel programma formativo.

L'acquisizione di queste competenze avviene attraverso gli insegnamenti di base della rappresentazione e caratterizzanti del design, e della comunicazione, e le attività laboratoriali multi-disciplinari previste nei laboratori di secondo e terzo anno.

La verifica dell'avvenuta acquisizione è effettuata tramite esami orali e prove pratiche, la valutazione delle attività svolte nei laboratori, e la valutazione del progetto finale.

Al termine del programma formativo lo studente:

- ha sviluppato capacità di apprendimento delle materie del design e tecnicoscientifiche:
- ha sviluppato capacità di utilizzare metodi e strumenti di progettazione, e di applicare i metodi di apprendimento sviluppati per approfondire e aggiornare in autonomia le proprie conoscenze;
- ha sviluppato capacità di individuare gli strumenti e i percorsi di formazione adeguati per lo sviluppo delle proprie conoscenze culturali e specialistiche e delle proprie competenze professionali.

Capacità di apprendimento

La capacità di apprendimento dello studente viene sviluppata e verificata attraverso le diverse modalità di erogazione delle attività formative, lo studio individuale, il supporto all'organizzazione del tempo di studio, in particolare per i tempi dedicati alle esercitazioni, ai laboratori ed alle attività progettuali.

La presenza di corsi che prevedono, tra gli obiettivi formativi, la capacità dello studente di consultare testi e manuali di natura tecnica e specialistica all'interno delle attività pratiche di laboratorio, fornisce allo studente la capacità di comprendere, anche in autonomia, i diversi aspetti legati ai settori dell'ingegneria e del design.

Il Corso di studi è caratterizzato da continui esercizi ed attività pratiche sviluppate nei laboratori, che mirano ad ottimizzare l'apprendimento.

La continua valutazione del profitto attraverso prove scritte ed orali, assicura il possesso da parte dello studente degli strumenti base per la propria crescita culturale e l'aggiornamento continuo delle proprie conoscenze, utilizzando fonti in lingua italiana ed in lingua inglese.

La verifica dell'avvenuta acquisizione è effettuata tramite la valutazione delle attività svolte durante le esercitazioni e nei laboratori, ed i corrispondenti esami.

Descrizione sintetica delle attività affini e integrative

10/12/2024

Le attività affini e integrative sono state progettate per consentire di approfondire aree di apprendimento specifiche delle classi di laurea del corso di studi.

In particolare, per la classe L4 del disegno industriale si prevede l'acquisizione di nozioni riguardanti: la meccanica

razionale, orientate all'impostazione e alla risoluzione di problemi di meccanica; il disegno tecnico industriale, orientate agli aspetti teorici e normativi del settore industriale; e gli elementi costruttivi dei prodotti industriali, orientate all'ampliamento delle conoscenze di progettazione meccanica.

Relativamente alla classe L9 dell'ingegneria industriale, sono previste nozioni nell'ambito del disegno industriale e della storia dell'architettura che vanno a caratterizzare il profilo che si vuole formare differenziandolo dalle altre lauree della stessa classe presenti nella scuola di ingegneria. In particolare, sono previsti insegnamenti relativi alle tecniche di rappresentazione, ai criteri e ai metodi per la selezione dei materiali per i prodotti industriali, al design per l'economia circolare, ai fondamenti di design del progetto e alla storia del design e della tecnica.

Le nozioni conferite da tali attività, costituiscono il necessario completamento del profilo culturale dell'Ingegnere per il Design Industriale, la cui formazione ricade sia nel campo dell'Ingegneria industriale che in quello del disegno industriale.

Caratteristiche della prova finale

28/12/2018

Il terzo anno si conclude con un progetto finale, che prevede un tirocinio curriculare svolto dallo studente presso strutture qualificate italiane o straniere (aziende, studi professionali, centri di ricerca) ed una prova finale, finalizzata all'accertamento delle competenze acquisite, della preparazione e della maturità conseguite dallo studente lungo l'intero percorso formativo, e costituisce un approfondimento progettuale che deve essere posto in continuità con l'attività di tirocinio svolta. La prova finale consiste in un elaborato scritto e una presentazione orale dell'attività svolta nel tirocinio. Il tutor del tirocinio svolge il ruolo di co-relatore insieme a un docente scelto dal candidato tra i professori ufficiali del Corso di Studio.

Modalità di svolgimento della prova finale

05/04/2019

Il giudizio sulla prova finale è affidato ad una Commissione di Laurea designata dal Direttore del Dipartimento di Ingegneria Civile e Industriale su proposta del Corso di Studio. La commissione, composta da n. 5 docenti, nominati tra i professori ufficiali afferenti al Corso di Studio, valuta la prova finale e provvede a determinare il voto di laurea sulla base del curriculum accademico del candidato. La commissione esprime un voto (da 18 a 30 e Lode) sulla prova finale basato sulle capacità di approfondimento, organizzazione ed esposizione del candidato.

QUADRO B1

Descrizione del percorso di formazione (Regolamento Didattico del Corso)

Pdf inserito: visualizza

Descrizione Pdf: Percorso formativo corso di Laurea in Ingegneria per il design industriale (IDIR-L)

Link: https://unipi.coursecatalogue.cineca.it/corsi/2025/11537

QUADRO B2.a

Calendario del Corso di Studio e orario delle attività formative

https://www.ing.unipi.it/it/studenti/orario-delle-lezioni

QUADRO B2.b

Calendario degli esami di profitto

https://www.ing.unipi.it/it/studenti/calendario-esami

QUADRO B2.c

Calendario sessioni della Prova finale

https://www.ing.unipi.it/it/studenti/appelli-di-laurea

QUADRO B3

Docenti titolari di insegnamento

Sono garantiti i collegamenti informatici alle pagine del portale di ateneo dedicate a queste informazioni.

N.	Settori	Anno di corso	Insegnamento	Cognome Nome	Ruolo	Crediti	Ore	Docente di riferimento per corso
1.	ICAR/13 ICAR/13	Anno di corso 1	CRITERI E METODI PER LA SELEZIONE DEI MATERIALI PER I PRODOTTI INDUSTRIALI $\underline{\text{link}}$	TAMBURRINO FRANCESCO	RD	12	90	
2.	ICAR/13 ICAR/13	Anno di corso 1	CRITERI E METODI PER LA SELEZIONE DEI MATERIALI PER I PRODOTTI INDUSTRIALI <u>link</u>	BARONE SANDRO	PO	12	30	
3.	ING- IND/15 ING- IND/15	Anno di corso 1	DISEGNO TECNICO INDUSTRIALE (modulo di LABORATORIO DI RAPPRESENTAZIONE) link	BERRETTA MAURIZIO		6	60	
4.	ICAR/13 ICAR/13	Anno di corso 1	LABORATORIO DI FONDAMENTI DEL PROGETTO I <u>link</u>	DASTOLI CATERINA	RD	6	60	V
5.	ING- IND/16 ING- IND/16	Anno di corso 1	LABORATORIO DI GESTIONE DELLA QUALITA' <u>link</u>			6		
6.	ICAR/17 ICAR/17 ING- IND/15 ING- IND/15	Anno di corso 1	LABORATORIO DI RAPPRESENTAZIONE <u>link</u>			12		
7.	MAT/01	Anno di corso 1	MATEMATICA 0 link			0	40	
8.	ICAR/18 ICAR/18	Anno di corso 1	STORIA DEL DESIGN E DELLA TECNICA <u>link</u>	BERTONCINI SABATINI PAOLO	PA	6	60	V
9.	ICAR/17	Anno di	TECNICHE DI RAPPRESENTAZIONE (modulo di LABORATORIO DI	BEVILACQUA MARCO	РО	6	60	V

	ICAR/17	corso 1	RAPPRESENTAZIONE) <u>link</u>	GIORGIO	
10.	NN NN	Anno di corso 1	TEST DI VALUTAZIONE DI INGEGNERIA <u>link</u>		2
11.	ICAR/13 ICAR/13	Anno di corso 2	DESIGN PER L'ECONOMIA CIRCOLARE <u>link</u>		6
12.	CHIM/07 CHIM/07	Anno di corso 2	FONDAMENTI CHIMICI DELLE TECNOLOGIE link		6
13.	ING- IND/13 ING- IND/13	Anno di corso 2	FONDAMENTI DI MECCANICA APPLICATA <u>link</u>		9
14.	ICAR/08 ICAR/08	Anno di corso 2	FORME STRUTTURALI PER IL DESIGN <u>link</u>		6
15.	ICAR/13 ICAR/13	Anno di corso 2	LABORATORIO DI FONDAMENTI DEL PROGETTO II <u>link</u>		15
16.	MAT/07 MAT/07	Anno di corso 2	MECCANICA RAZIONALE <u>link</u>		6
17.	ICAR/08 ICAR/08	Anno di corso 2	SCIENZA DELLE COSTRUZIONI <u>link</u>		6
18.	ING- IND/16 ING- IND/16	Anno di corso 2	TECNOLOGIE DI PRODUZIONE <u>link</u>		6
19.	NN NN	Anno di corso 2	TEST DI VALUTAZIONE DI INGEGNERIA <u>link</u>		2
20.	ING- IND/14 ING- IND/14	Anno di corso 3	ELEMENTI COSTRUTTIVI DEL PRODOTTO INDUSTRIALE <u>link</u>		9
21.	ING- IND/13 ING- IND/13	Anno di corso 3	HUMAN FACTORS IN PRODUCT DESIGN <u>link</u>		6
22.	ICAR/13 ICAR/13	Anno di corso 3	LABORATORIO DI DESIGN DEL PRODOTTO INDUSTRIALE <u>link</u>		12
23.	ING- IND/16 ING- IND/16	Anno di corso 3	LABORATORIO DI GESTIONE DELLA QUALITA' <u>link</u>		6
24.	NN NN	Anno di corso 3	LIBERA SCELTA PER RICONOSCIMENTI <u>link</u>		18
25.	NN NN	Anno di corso 3	LIBERA SCELTA PER RICONOSCIMENTI <u>link</u>		18
26.	INF/01 INF/01	Anno di corso 3	PROGETTAZIONE GRAFICA <u>link</u>		6
27.	ING- IND/15 ING- IND/15	Anno di corso 3	PROTOTIPAZIONE VIRTUALE E FISICA <u>link</u>		6
28.	NN NN	Anno di corso 3	PROVA DI LINGUA INGLESE B2 <u>link</u>		3
29.	PROFIN_S PROFIN_S		PROVA FINALE <u>link</u>		3
30.	M-PSI/01 M-PSI/01	Anno di corso 3	PSICOLOGIA COGNITIVA <u>link</u>		6
31.	ING- IND/35 ING- IND/35	Anno di corso 3	STRATEGIA ED ECONOMIA DEL PROGETTO <u>link</u>		9
32.	NN NN	Anno di corso 3	TEST DI VALUTAZIONE DI INGEGNERIA <u>link</u>		2
33.	NN NN	Anno di corso 3	TIROCINIO link		6

Aule

Descrizione link: Sistema informativo University Planner per la gestione delle aule

Link inserito: https://su.unipi.it/OccupazioneAule

Pdf inserito: visualizza

Descrizione Pdf: Scuola di Ingegneria - aule didattiche

QUADRO B4

Laboratori e Aule Informatiche

Pdf inserito: visualizza

Descrizione Pdf: Scuola di Ingegneria - aule informatiche e laboratori

Sale Studio

Descrizione link: Sale Studio

Link inserito: https://www.unipi.it/campus-e-servizi/servizi/biblioteche-e-sale-studio/

QUADRO B4

Biblioteche

Descrizione link: Biblioteca di Ingegneria

Link inserito: http://www.sba.unipi.it/it/biblioteche/polo-5/ingegneria

QUADRO B5

Orientamento in ingresso

14/05/2025

Descrizione link: Sito web di ateneo sull'Orientamento in ingresso Link inserito: https://www.unipi.it/didattica/iscrizioni/orientamento/

Pdf inserito: visualizza

Descrizione Pdf: Orientamento in ingresso

QUADRO B5

Orientamento e tutorato in itinere

14/05/2025

Descrizione link: Sito web di ateneo sull'Orientamento

Link inserito: https://www.unipi.it/campus-e-servizi/servizi/servizio-di-tutorato-alla-pari-gli-studenti-esperti-tutor/

Pdf inserito: visualizza

Descrizione Pdf: Orientamento e tutorato in itinere

Assistenza per lo svolgimento di periodi di formazione all'esterno (tirocini e stage)

14/05/2025

Assistenza e accordi per la mobilità internazionale degli studenti

In questo campo devono essere inserite tutte le convenzioni per la mobilità internazionale degli studenti attivate con Atenei stranieri, con l'eccezione delle convenzioni che regolamentano la struttura di corsi interateneo; queste ultime devono invece essere inserite nel campo apposito "Corsi interateneo".

Per ciascun Ateneo straniero convenzionato, occorre inserire la convenzione che regolamenta, fra le altre cose, la mobilità degli studenti, e indicare se per gli studenti che seguono il relativo percorso di mobilità sia previsto il rilascio di un titolo doppio o multiplo. In caso non sia previsto il rilascio di un titolo doppio o multiplo con l'Ateneo straniero (per esempio, nel caso di convenzioni per la mobilità Erasmus) come titolo occorre indicare "Solo italiano" per segnalare che gli studenti che seguono il percorso di mobilità conseguiranno solo il normale titolo rilasciato dall'ateneo di origine.

Pdf inserito: visualizza

Descrizione Pdf: Mobilità internazionale degli studenti

Descrizione link: Pagina web per opportunità di internazionalizzazione

Link inserito: https://www.unipi.it/didattica/studi-e-tirocini-allestero/studiare-allestero/

n.	Nazione	Ateneo in convenzione	Codice EACEA	Data convenzione	Titolo
1	Belgio	Katholieke Universiteit Leuven	B LEUVEN01	23/04/2025	solo italiano
2	Belgio	Universite Catholique De Louvain	B LOUVAIN01	23/04/2025	solo italiano
3	Belgio	Universiteit Antwerpen	B ANTWERP01	23/04/2025	solo italiano
4	Danimarca	Aarhus Universitet	DK ARHUS01	23/04/2025	solo italiano
5	Francia	Association Léonard De Vinci	F PARIS270	23/04/2025	solo italiano
6	Francia	Ecole Speciale Des Travaux Publics, Du Batiment Et De L'Industrie	F PARIS068	23/04/2025	solo italiano
7	Francia	Institut National Des Sciences Appliquees De Rouen	F ROUEN06	23/04/2025	solo italiano
8	Francia	Institut Polytechnique De Bordeaux	F BORDEAU54	23/04/2025	solo italiano
9	Francia	Institut Polytechnique Des Sciences Avancées	F PARIS342	23/04/2025	solo italiano
10	Francia	Universite De Limoges	F LIMOGES01	23/04/2025	solo italiano
11	Germania	Fachhochschule Reutlingen	D REUTLIN02	23/04/2025	solo italiano
12	Germania	Friedrich-Alexander-Universitaet Erlangen Nuernberg	D ERLANGE01	23/04/2025	solo italiano
13	Germania	Hochschule Esslingen	D ESSLING03	23/04/2025	solo italiano
14	Germania	Hochschule Fur Angewandte Wissenschaften Fachhochscule Kempten	D KEMPTEN01	23/04/2025	solo italiano
15	Germania	Otto-Von-Guericke-Universitaet Magdeburg	D MAGDEBU01	23/04/2025	solo italiano
16	Germania	Technische Universitaet Muenchen	D MUNCHEN02	23/04/2025	solo italiano
17	Germania	Technische Universitat Braunschweig	D BRAUNSC01	23/04/2025	solo italiano
18	Norvegia	Hogskolen I Ostfold	N HALDEN02	23/04/2025	solo italiano
19	Paesi Bassi	Hanzehogeschool Groningen Stichting	NL GRONING03	23/04/2025	solo italiano
20	Paesi Bassi	Stichting Hoger Onderwijs Nederland	NL S-GRAVE37	23/04/2025	solo italiano
21	Paesi Bassi	Technische Universiteit Delft	NL DELFT01	23/04/2025	solo italiano
22	Paesi Bassi	Universiteit Twente	NL ENSCHED01	23/04/2025	solo italiano
23	Polonia	Politechnika Lodzka	PL LODZ02	23/04/2025	solo italiano
24	Polonia	Politechnika Lubelska	PL LUBLIN03	23/04/2025	solo italiano
25	Polonia	Politechnika Poznanska	PL POZNAN02	23/04/2025	solo italiano
26	Polonia	Politechnika Rzeszowska Im Ignacego Lukasiewicza Prz	PL RZESZOW01	23/04/2025	solo italiano
27	Portogallo	Instituto Politecnico Do Porto	P PORTO05	23/04/2025	solo italiano
28	Portogallo	Universidade Do Minho	P BRAGA01	23/04/2025	solo italiano
29	Portogallo	Universidade Do Porto	P PORTO02	23/04/2025	solo italiano
	. 5.1094110			25.57/2020	3010 10

30	Portogallo	Universidade Nova De Lisboa	P LISBOA03	23/04/2025	solo italiano
31	Repubblica Ceca	Vysoke Uceni Technicke V Brne	CZ BRNO01	23/04/2025	solo italiano
32	Romania	UNIVERSITATEA NATIONALA DE STIINTA SI TEHNOLOGIE POLITEHNIC A BUCURESTI		23/04/2025	solo italiano
33	Romania	Universitatea Tehnica Cluj-Napoca	RO CLUJNAP05	23/04/2025	solo italiano
34	Romania	Universitatea Transilvania Din Brasov	RO BRASOV01	23/04/2025	solo italiano
35	Slovacchia	Zilinska Univerzita V Ziline	SK ZILINA01	23/04/2025	solo italiano
36	Slovenia	Univerza V Ljubljani	SI LJUBLJA01	23/04/2025	solo italiano
37	Slovenia	Univerza V Ljubljani	SI LJUBLJA01	23/04/2025	solo italiano
38	Spagna	Universidad Carlos Iii De Madrid	E MADRID14	23/04/2025	solo italiano
39	Spagna	Universidad De Granada	E GRANADA01	23/04/2025	solo italiano
40	Spagna	Universidad De Leon	E LEON01	23/04/2025	solo italiano
41	Spagna	Universidad De Sevilla	E SEVILLA01	23/04/2025	solo italiano
42	Spagna	Universidad Politecnica De Cartagena	E MURCIA04	23/04/2025	solo italiano
43	Spagna	Universidad Politecnica De Cartagena	E MURCIA04	23/04/2025	solo italiano
44	Spagna	Universidad Politecnica De Madrid	E MADRID05	23/04/2025	solo italiano
45	Spagna	Universidad Pontificia Comillas	E MADRID02	23/04/2025	solo italiano
46	Spagna	Universidad Rey Juan Carlos	E MADRID26	23/04/2025	solo italiano
47	Spagna	Universitat Autonoma De Barcelona	E BARCELO02	23/04/2025	solo italiano
48	Spagna	Universitat Politecnica De Catalunya	E BARCELO03	23/04/2025	solo italiano
49	Spagna	Universitat Politecnica De Valencia	E VALENCI02	23/04/2025	solo italiano
50	Spagna	Universitat Rovira I Virgili	E TARRAGO01	23/04/2025	solo italiano
51	Svizzera	ZURICH UNIVERSITY OF APPLIED SCIENCES (ZHAW)		01/01/2018	solo italiano
52	Turchia	Gazi Universitesi	TR ANKARA02	23/04/2025	solo italiano
53	Turchia	Istanbul Arel Universitesi	TR ISTANBU29	23/04/2025	solo italiano
54	Turchia	Karadeniz Teknik Universitesi	TR TRABZON01	23/04/2025	solo italiano
55	Turchia	Kocaeli Universitesi	TR KOCAELI02	23/04/2025	solo italiano
56	Turchia	Nisantasi Universitesi	TR ISTANBU45	23/04/2025	solo italiano

QUADRO B5

Accompagnamento al lavoro

14/05/2025

Descrizione link: Il servizio di Career Service

Link inserito: https://www.unipi.it/campus-e-servizi/verso-il-lavoro/career-service/

Pdf inserito: visualizza

Descrizione Pdf: Accompagnamento al lavoro

QUADRO B5

Eventuali altre iniziative

29/05/2025

Il Corso di Studio organizza incontri di orientamento in ingresso e in itinere per gli allievi del corso. Il presidente o un suo delegato insieme con il Presidente della Scuola di Ingegneria tiene un incontro durante la prima settimana di lezione per illustrare l'organizzazione del corso di studio, il funzionamento dei suoi organi, gli strumenti di supporto messi a disposizione dalla Scuola di Ingegneria e l'organizzazione della didattica.

Il Corso di Studio organizza, inoltre, incontri di tutoraggio volti ad indirizzare gli allievi nell'organizzazione dello studio e nella programmazione degli appelli di esame per il superamento degli esami di profitto, mettendo in risalto la possibilità di sostenere prove in itinere a disposizione per alcuni insegnamenti.

Il Corso di Studio organizza, infine, incontri informativi per gli studenti interessati a svolgere un periodo di mobilità all'estero all'interno del programma Erasmus o di altri programmi di mobilità internazionale promossi dall'Ateneo o da enti esterni.

Orientamento in uscita

Il Corso di Studio organizza incontri di orientamento per tutti gli allievi dell'ultimo anno finalizzato alla descrizione di eventuali sbocchi lavorativi e al proseguimento del percorso di studi, illustrando i potenziali corsi di Laurea Magistrale e i relativi requisiti e modalità di ammissione.

11/09/2025

Il periodo di osservazione va da novembre 2024 a luglio 2025.

I risultati della valutazione si basano su 577 questionari, compilati da studenti che dichiarano di aver frequentato gli insegnamenti valutati nell'a.a. 2024-25 (gruppo A), di cui il 3% con una frequenza completa delle lezioni, il 90% con una frequenza di oltre la metà del corso, il 3% con una frequenza minore della metà. Tra le motivazioni della scarsa frequenza si menzionano le seguenti risposte: "lavoro", "frequentazione di altri insegnamenti", "frequentazione poco utile ai fini dell'esame". Tra gli "altri motivi" causa della scarsa frequenza, dalla consultazione dei singoli questionari, si menziona "soggiorno all'estero per scambi didattici Italia-Cina" oppure ci si riferisce a motivi di salute.

Il diagramma delle valutazioni medie per il totale degli insegnamenti risulta abbastanza omogeneo con valori che sono compresi tra 2.9 e 3.5, in linea con quello dello scorso anno. Non sono segnalate criticità

Sono particolarmente apprezzati dagli studenti (punteggio maggiore di 3,2):

- l'adeguatezza delle aule per le lezioni in presenza (3,5);
- il rispetto dell'orario di svolgimento di lezioni, esercitazioni e altre eventuali attività didattiche (3,4);
- l'utilità delle attività didattiche integrative all'apprendimento della materia (3,4);
- la reperibilità del docente per chiarimenti e spiegazioni (3.5):
- l'interessamento dello studente agli argomenti trattati nel corso di insegnamento (3.3):
- la coerenza di quanto dichiarato sul portale valutami (3,3);
- il rispetto dei principi di eguaglianza e pari opportunità (3,5).

Il valore minimo di 2.9 è relativo alla mancanza di "conoscenze preliminari sono risultate sufficienti per la comprensione degli argomenti del programma d'esame".

Il giudizio complessivo del Corso di Laurea risulta quindi buono con punteggio di 3,2.

Tra i suggerimenti per il miglioramento della didattica prevalgono "migliorare il materiale didattico", "fornire più conoscenze di base", "alleggerire carico complessivo", "inserire prove d'esame intermedie" e "aumentare il supporto didattico".

Andando ad analizzare i questionari riferiti ai singoli insegnamenti del CdS che hanno ricevuto valutazione, si può notare come, in generale, ci siano state valutazioni positive, mediamente maggiori o uguali a 3. Ci sono stati, solo per alcuni insegnamenti, dei valori minori di 2,5 (compresi tra 1.2 e 2,5) prevalentemente relativi a:

- conoscenze preliminari richieste (2 valori)
- gli orari di svolgimento attività didattiche (1 valore);
- chiarezza della modalità di svolgimento dell'esame (2 valori);
- la capacità del docente di stimolare interesse per la disciplina (1 valore);
- il carico di studio (3 valori):
- coerenza con il course catalogue (1 valore);
- la chiarezza di esposizione (1 valore);
- l'adequatezza del materiale didattico (3 valori).

Questi aspetti sono stati discussi con i docenti interessati.

Per quanto riguarda il questionario organizzazione/servizi A.A. 2024/25, il numero di studenti partecipanti all'indagine è stato pari a 155. Il giudizio complessivo sulla qualità organizzativa del corso risulta essere 2,8, leggermente inferiore rispetto a quello dell'anno precedente (2,9). I servizi offerti dall'Unità Didattica e quelli di informazione e orientamento sono stati apprezzati (3,0 e 3,0), così come l'attività di tutorato (3,1). L'orario delle lezioni risulta essere abbastanza appropriato (2,8), così come le aule in cui si svolgono le lezioni e le aule studio (3,2 e 2,8) e l'accessibilità delle biblioteche e laboratori (2,9 e 3,2). Positivo è il giudizio sull'adequatezza del tirocinio rispetto alla finalità professionalizzante (3,2), che dimostra come le aziende coinvolte in questa attività sono da considerarsi più che idonee. Le informazioni sul sito del Dipartimento sono valutate abbastanza positivamente (2,9). L'organizzazione complessiva degli insegnamenti risulta efficace (3,0), così come il carico di studio personale è valutato sostenibile (3,0).

Link inserito: http://

QUADRO B7

Opinioni dei laureati

Dalle rilevazioni delle opinioni dei laureati triennali (fonte Consorzio Interuniversitario AlmaLaurea) nell'anno solare 2024 (17 opinioni relative ai 18 laureati) emergono le seguenti valutazioni. Il 76,5% dei laureati ha dichiarato di aver freguentato più del 75% degli insegnamenti. Riguardo ad aule e servizi: l'88,2 % dei laureati ritiene le aule adequate e l'80 % ritiene che il numero di postazioni informatiche messe a disposizione dell'Ateneo sia adeguato; il servizio di biblioteca è ritenuto positivo dal 83,3% degli intervistati. Gli spazi dedicati allo studio individuale sono considerati adeguati dal 56,3%, e l'93,8% considera adeguate le attrezzature per attività didattiche (laboratori). L' 88,2% ha un giudizio positivo del rapporto con i docenti e l'88,3% ha dichiarato che il carico didattico complessivo è stato adeguato alla durata del corso di studio. Il 94,1% è soddisfatto dell'organizzazione degli esami. L'94,1% dei laureati si è dichiarato complessivamente soddisfatto del corso di studi seguito, anche se solo il 58,8% si iscriverebbe di nuovo allo stesso corso di studio nello stesso Ateneo, mentre il 5,9% si iscriverebbe allo stesso corso ma in un altro Ateneo e il 29,4% si iscriverebbe a un altro corso dello stesso ateneo. In sintesi, le opinioni sulla didattica risultano essere sostanzialmente positive, con un significativo aumento della percentuale di studenti che si iscriverebbe nello stesso corso.

Descrizione link: Risultati dell'indagine 2025 sul profilo dei laureati nel 2024

Link inserito: https://www2.almalaurea.it/cgi-php/universita/statistiche/visualizza.php?

anno=2024&corstipo=L&ateneo=70024&facolta=1401&gruppo=tutti&livello=tutti&area4=tutti&pa=70024&classe=tutti&postcorso=0500106200400001&isstella=0⁻oareageo=2&areageo=

QUADRO C1

Dati di ingresso, di percorso e di uscita

Dati presi da unipistat riferiti al 31 dicembre 2024.

Il corso di laurea è a numero programmato (50 EU, 3 extra EU, 1 Marco Polo). Con riferimento all'a.a. 2024/2025 il numero di immatricolati è stato pari a 35 contro i 48 dell'A.A. 2023/24.

La provenienza degli immatricolati nell'AA 2024/25 è da imputare per circa il 65,7% alla Toscana e il 54,3% dal bacino locale. Il 20% dei laureati proviene dal nord e il 2,9% dal sud e dalle isole, l' 77,2% dal centro. C'è una prevalenza del genere femminile pari al 51,4%. La maggior parte (72,3%) degli immatricolati ha conseguito il titolo di studio di scuola superiore in un liceo (scientifico 80,8%, classico 7,6). Il 31,4% ha conseguito il diploma con un voto tra 70 e 79, il 17,1% ha preso 100, il 14,3% un voto tra 60 e 69, il 22,9% un voto tra 80 e 89 e il 14,3% un voto tra 90 e 99.

Dati di percorso

Passaggi in uscita: alla fine del primo anno di corso si riscontra una percentuale di iscritti al secondo anno della coorte 2023 pari al 74.5% (valori precedenti 78,6%, 64,5%, 63,0% e 71,1% per le coorti del 2022, 2021, 2020 e 2019 rispettivamente). Alla fine del secondo anno di studio si riscontra una percentuale di iscritti al terzo anno della coorte 2022 pari al 93,9% (valori precedenti 90,0%, 79,3% e 81,5% per le coorti del 2021, 2020 e 2019 rispettivamente). Il 5,7% degli studenti della coorte 2024 è passato ad un altro corso di studio dell'ateneo (valori precedenti 4,3%, 2,4%,12,9%, 4,3% e 13,2% per le coorti del 2023, 2022, 2021 2020 e 2019 rispettivamente).

La percentuale degli studenti che rinunciano al primo anno è molto variabile e in media pari al 18,11% (il 13,2% per la coorte del 2019, il 30,4% per quella del 2020, il 22,6% per quella del 2021, il 19,0% per quella del 2022, il 14,9 per quella del 2023 e l'8,6% per il 2024). La percentuale delle rinunce diminuisce significativamente per gli studenti iscritti al secondo anno sia per quello che riguarda i valori che per le tendenze negli anni (18,5%, 6,9%, 5,0%, 3,0% e 5,7% per le cinque coorti rispettivamente).

Studenti attivi

La percentuale di studenti iscritti al primo anno (coorte 2024) che hanno acquisito CFU è dell'80%, (valori precedenti 74,5%, 83,3%, 67,7%, 69,6% e 63,2% per le coorti del 2023, 2022, 2021, 2020 e 2019 rispettivamente). Il numero medio di CFU acquisiti dagli studenti attivi al primo anno è di 33,7 per la coorte 2023 (valori precedenti 29,7, 38,1, 33,2 e 32,6 per le coorti del 2022, 2021, 2020 e 2019 rispettivamente). Il numero medio di CFU acquisiti dagli studenti attivi al secondo anno è di 75,5 per la coorte 2022 (valori precedenti 89,7, 66,7 e 64,2 per le coorti del 2021, 2020 e 2019 rispettivamente). Il numero medio di CFU acquisiti dagli studenti attivi al terzo anno è di 137,4 per la coorte 2021 (valore precedente 126,7 e 107,2 per la coorte del 2020 e 2019).

Dati in uscita

I laureati in corso sono stati 6 per la coorte del 2021 (valore precedente 13 per la coorte del 2020). I laureati entro un anno fuori corso sono stati 2 per la coorte del 2020

Link inserito: http://

QUADRO C2

Efficacia Esterna

I dati si riferiscono alle indagini occupazionali condotte dal Consorzio Interuniversitario AlmaLaurea nel 2024 sui laureati intervistati ad 1 anno dal conseguimento del titolo (17 questionari compilati su 18 laureati). Data l'esiguità del campione, i dati potrebbero mostrarsi non attendibili e pertanto non restituire appieno lo stato dell'efficacia esterna del corso. I laureati che hanno risposto ai quesiti hanno dichiarato un'età media alla laurea di 23,3 anni, un voto medio di 105,3/110, ed una durata media del percorso di 3,6 anni. Il 70,6% degli intervistati si è iscritto ad un corso di laurea magistrale (il 41,7% lo ha fatto presso lo stesso Ateneo di conseguimento della laurea di primo livello), ritenendolo nel 100% del medesimo settore disciplinare pur non rappresentando il proseguimento 'naturale' del percorso formativo. Le motivazioni riguardo a tale scelta si configurano nel desiderio di migliorare la formazione culturale (100%).

Descrizione link: Indagine sulla condizione occupazionale dei laureati nel 2023 intervistati a un anno dal conseguimento del titolo

Link inserito: https://www.unipi.it/index.php/qualita-didattica/itemlist/category/2426-almalaurea-occupazionale1a2023

QUADRO C3

Opinioni enti e imprese con accordi di stage / tirocinio curriculare o extracurriculare

A partire dal 2022 sono stati attivati i tirocini curriculari e numerosi studenti hanno terminato le attività di tirocini azienda. Nello specifico ha eseguito il tirocinio il 40% studenti del collettivo di studenti selezionato. L'opinione delle aziende che hanno ospitato gli studenti è in genere molto positiva sia per quanto riguarda l'attitudine che per quello che riguarda la preparazione degli studenti, soprattutto relativamente alla conoscenza degli strumenti di progettazione e prototipazione.

Link inserito: http://