

Dipartimento Integrato Interistituzionale DIPINT

Primo Workshop Clinical Research and Innovation Venerdi 4 luglio 2014 9,00 - 19,00 Aula Magna - Polo Fibonacci - Largo Pontecorvo 3, Pisa

New strategies for bone regeneration and modeling in otologic and orthopedic surgery

Serena Danti

Prof. Stefano Berrettini

Direttore U.O. ORL, Audiologia e Foniatria Univ. - AOUP Dip. Patologia Chirurgica, Medica, Molecolare e dell'area Critica, Università di Pisa

Dr. Paolo Parchi

Direttore U.O. Ortopedia I – AOUP Direttore Prof. M. Lisanti Dip. Ricerca Traslazionale e Nuove Tecnologie in Medicina e Chirurgia Università di Pisa

Prof. Stefano Giannotti

U.O. Traumatologia e Ortopedia II- AOUP Direttore Prof. G. Guido Dip. Ricerca Traslazionale e Nuove Tecnologie in Medicina e Chirurgia Università di Pisa

New Banked Bone Prostheses for Otologic Surgery

В

Otology

Berrettini S, Danti S, De Vito A, Bruchini L, Forli F, Stefanini C

New Banked Bone Prostheses for Otologic Surgery

CLINICAL STUDY on 25 patients (15 M ,10 F). Follow-up at 12 -36 months (mean 25 months):

Mean preoperative ABG was 36.3 dB (range 15.00-50.75) SD 9.72 Mean post-operative ABG 17.9 dB (range 2.75 - 36.25 dB) SD 9.46 Mean Gain 18.4 dB ABG < 20dB in 64% of cases (16/25)

No resorption, No extrusion, No bone fixation

Tissue-Engineered Ossicular Prostheses

Berrettini S, Danti S, D'Alessandro D, Trombi L, Petrini M

Extracellular Matrix

Viable cells

Mesenchymal Stem Cells (MSCs) from Bone Marrow Aspirates in the Treatment of Long Bone Pseudarthrosis

Parchi P, Lisanti M

1. Sampling From The ILIAC CREST

2. Transfer to a test tube.

3. Centrifugation and separation

4. Collection and concentration of MSC

5. MSC are mixed with demineralized bone matrix

Regen Kit Extracell Bmc

Mesenchymal Stem Cells (MSCs) from Bone Marrow Aspirates in the Treatment of Long Bone Pseudarthrosis

Parchi P, Lisanti M

From January 2009 to May 2013

27 cases of long Bone Pseudarthrosis

Extracell BMC-marrow aspirate protocol of Regen Lab

RESULTS

Radiographic investigation shows complete healing in 75% (20 cases) with an average time to healing of 4.9 months (complete remission of symptoms)

Upper limb non-unions treated with autologous MSC / fibrin clot constructs

Giannotti S, Trombi L, Bottai V, Ghilardi M, Petrini M, Guido G

- Years 2004-2007: Limited number (8 cases: 4 M, 4 F; mean age 44 years; range 18–73 years) of <u>compassionate therapies</u> (1 or more surgical interventions with unsatisfactory outcomes and no alternative therapy was available)
- upper limb revision surgery for atrophic pseudarthrosis
- Implanted with autologous MSC/fibrin scaffold constructs.

Upper limb non-unions treated with autologous MSC / fibrin clot constructs

Giannotti S, Trombi L, Bottai V, Ghilardi M, Petrini M, Guido G

Table 2. Details of MSC/fibrin clot construct implant and of post-implant healing.

Patient	Number of interventions	Number of constructs implanted	Bone substitute	Time of radiographic healing (months)
F. 45	1	2	Autologous bone graft from Bac crest	5.0
M. 27	1	5	Banked homologous bone and allomatrix	35
F. 73	1	6	Autologous bone graft from iliac crest, synthetic bone chips	5.0
M. 61	1	4	Homologous bone chips (Osteotech)	10.0
M, 51	1	2	Synthetic bone chips	75
M. 46	1	5	Autologous bone graft from iliac crest	6.0
F, 18	1	4	Autologous bone graft from liac crest	5.0
F. 31	1*	2+2 (ulna+radius)	Banked homologous bone	6.0
	1**	1+4 (ulna+radius)	Autologous bone graft from Illac crest	6.0

- Radiographic healing was evaluated with shortand long-term follow-ups (range averages: 6.7 and 76.0 months).
- All patients recovered limb function, with no evidence of tissue overgrowth or tumor formation.

OPEN C ACCESS Freely available online

PLOS ONE

Use of Autologous Human mesenchymal Stromal Cell/Fibrin Clot Constructs in Upper Limb Non-Unions: Long-Term Assessment

Stefano Giannotti¹³, Luisa Trombi²⁺³, Vanna Bottai¹, Marco Ghilardi¹, Delfo D'Alessandro³, Serena Danti³, Giacomo Dell'Osso¹, Giulio Guido¹, Mario Petrini³

General Conclusions

- It is estimated that 3.1 million people per year undergo implantation of an exogenous material or device.
- The global biomaterials/medical devices market is estimated at 110 € billions.
- Joint endoprostheses, fracture management devices and other implants reasonant 10% of the market (11€ billions).
- Device implants carry the risk of failure due to biological incompatibility, infections, wear and loosening.
- There is urgency of advanced strategies for bonk repacement that minimize adverse reactions and/or promote tissue formation primplant integration.
- New strategies are expected to bouf great social and economic significance.
- Our studies demonstrate bal

_

- The use of homologous bone can be efficiently tailored to the needs of otologic surgery constant advanced micromechanical technologies;
- Orthor caic surgery can take great advantage of autologous bone marrow MSCs combined with supportive scaffolds.
- For clinical success, the tight partnership between government authorities, research institutes and industry is mandatory.