Remote Sensing for environment monitoring and surveillance applications

Prof. M. Diani
RS&IP group
Dipartimento di Ingegneria dell’Informazione
Via G. Caruso – PISA
Email: m.diani@iet.unipi.it
Phone: 0502217532
Remote sensing

- **Remote sensing** is the acquisition of information about an object or phenomenon without making physical contact with the object. Connection with surveillance applications is straightforward.

- Geology
- Water quality
- Vegetation monitoring
- Archeology
- Land use
- Material and target detection
Integrated systems

- Recently remote sensing has evolved moving towards more complex systems made up by the integration of complementary sensors. The monitored scene is sensed with different sensors in order to get:
 - Detailed spatial information;
 - Accurate spectral information;
 - Optical properties in different spectral regions;

Platforms are equipped with GPS/INS instrumentation allowing accurate direct georeferencing:
 - 3D structures from multiple images
 - Context analysis;
 - Multitemporal analysis.
Recently remote sensing has evolved moving towards more complex systems made up by the integration of complementary sensors. The monitored scene is sensed with different sensors in order to get:

- Detailed spatial information;
- Fine spectral information;
- Optical properties in different spectral regions;
- 3D structures from multiple images;
- Context analysis;
- Multitemporal analysis.
Recently remote sensing has evolved moving towards more complex systems made up by the integration of complementary sensors. The monitored scene is sensed with different sensors in order to get:

- Accurate spectral information;
- Optical properties in different spectral regions;
- Platforms are equipped with GPS/INS instrumentation allowing accurate direct georeferencing:
 - 3D structures from multiple images;
 - Context analysis;
 - Multitemporal analysis.

Spatial dimension (across the flight line swath)
Spectral dimension
Reflectance
Wavelength [μm]
Recently remote sensing has evolved moving towards more complex systems made up by the integration of complementary sensors. The monitored scene is sensed with different sensors in order to get:
- Detailed spatial information;
- Accurate spectral information;
- Optical properties in different spectral regions;

Platforms are equipped with GPS/INS instrumentation allowing accurate direct georeferencing:
- 3D structures from multiple images
- Context analysis;
- Multitemporal analysis.
Integrated systems

- Recently remote sensing has evolved moving towards more complex systems made up by the integration of complementary sensors.
- The monitored scene is sensed with different sensors in order to get:
 - Detailed spatial information;
 - Accurate spectral information;
 - Optical properties in different spectral regions;

Platforms are equipped with GPS/INS instrumentation allowing accurate direct georeferencing:
- 3D structures from multiple images
- Context analysis;
- Multitemporal analysis.
Now focus is on integrated systems

- Recently remote sensing has evolved moving towards more complex systems made up by the integration of complementary sensors. The monitored scene is sensed with different sensors in order to get:
 - Detailed spatial information;
 - Fine spectral information;
 - Optical properties in different spectral regions;

Platforms are equipped with GPS/INS instrumentation allowing accurate direct georeferencing:
 - 3D structures from multiple images
 - Context analysis;
 - Multitemporal analysis.
Integrated systems

- Multitemporal analysis.

Knowledge Acceleration and ICT

Pisa, 20 Settembre 2013
Integrated systems

- Multitemporal analysis.
Our expertise

- Complex systems demand new signal processing capabilities to automatically handle the huge amount of data and drive the operator to what is really of concern for the application of interest.

 - Preprocessing: redundancy reduction, filtering, noise estimation etc.
 - Spatial analysis (shape, length, width, orientation, etc.)
 - Spectral analysis (finding spectral anomalies, detecting a specific material, etc.)
 - Algorithms to build geometry from multiple images (e.g. 3D image reconstruction from the displacement map).
 - Accurate georeferencing and coregistration.
 - Detection and classification of changes in multitemporal images.
The RS&IP Group

Permanent staff
- Prof. G. Corsini
- Prof. M. Diani
- Dr. Ing. N. Acito

Post-Doc Researchers and contractors
- Dr. A. Rossi
- Dr. S. Matteoli
- Ing. A. Zingoni

+ PHD and master thesis students

Facilities
- Image processing laboratory
 WS, SW for image processing, acquisition devices, GPGPU, DSP.
- Remote Sensing laboratory
 WS, SW Remote sensing, analysis tools.

Projects funded by or in cooperation with:
- Italian Space Agency (ASI)
- European Institutions (ONERA, TNO, RMA, FFI, FGAN etc.)
- MIUR
- Tuscany Region
- SELEX
- Local companies (IDS, FlyBy, etc.)