Università di Pisa - Corso di Specializzazione per il Sostegno

Laboratorio di Matematica

Scuola Secondaria

Leonardo Gnesi

Liceo "G. Marconi" di San Miniato (PI)

leonardo.gnesi@istruzione.it

Marzo – Aprile 2015

Tanto per gradire

In order to be a great writer a person must have a built-in, shockproof crap detector.

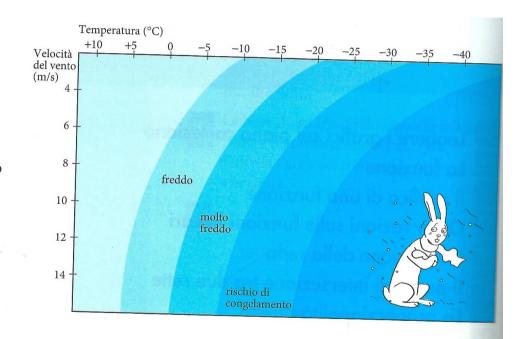
E.Hemingway cit. in [2]

Problemi?

• $1,7 \times 5 - 0,3 \times 2 [6,25 - 1,6 : (1,6-0,3 \times 4)] - 0,21$

Problemi?

- $1,7 \times 5 0,3 \times 2 [6,25 1,6 : (1,6-0,3 \times 4)] 0,21$
- Per fare un regalo 4 amici spendono 12,60 euro a testa. Quanto avrebbero speso se fossero stati in 6?


Problemi?

- $1,7 \times 5 0,3 \times 2 [6,25 1,6 : (1,6-0,3 \times 4)] 0,21$
- Per fare un regalo 4 amici spendono 12,60 euro a testa. Quanto avrebbero speso se fossero stati in 6?
- Gioco sul piano cartesiano: "L' obiettivo è conquistare i punti del piano cartesiano, nel seguente modo:
 - i giocatori lanciano a turno il dado per due volte;
 - Il primo numero indica la coordinata x del punto, il secondo numero indica la coordinata y.
 - Se il punto è già occupato, il turno passa all' altro giocatore.
 - Vince chi, in un tempo prestabilito, conquista più punti.

Problema?

Vediamo degli esercizi in cui le informazioni possono essere rappresentate con un grafico sul piano cartesiano.

Ad esempio, nel grafico a fianco è rappressentato l'effetto del vento sulla temperatura percepita dal corpo.

- Rispondi alle domande basandoti sul grafico qui sopra.
 - a) Quale dev'essere la temperatura affinché ci possa essere rischio di congelamento con una velocità del vento di 4 m/s?
 - b) Quale dev'essere la velocità del vento affinché con una temperatura di –15 °C ci possa essere rischio di congelamento?
 - c) Inventa da solo una domanda riferita al grafico e dai la risposta.

Problemi!

Dai programmi della scuola primaria (1985):

"...le nozioni matematiche di base vanno fondate e costruite partendo da situazioni problematiche concrete, che scaturiscono da esperienze reali del fanciullo ..."

Problemi!

E dalle Indicazioni Nazionali (2012):

"...In matematica è elemento fondamentale il laboratorio, inteso come momento in cui l'alunno è attivo, formula le proprie ipotesi e ne controlla le conseguenze[...] Nella scuola primaria si potrà utilizzare il gioco, che ha un ruolo cruciale nella comunicazione, nell'educazione al rispetto di regole condivise, nell'elaborazione di strategie adatte a contesti diversi."

Problemi scolastici e problemi reali

Spesso gli alunni elaborano un modello concettuale di problema scolastico **dissociato** dal problema reale, in cui il riferimento al "concreto" e all' esperienza non è sufficiente a contrastare comportamenti "patologici":

es. Molti bambini a cui viene chiesto "Quale sarà la temperatura dell' acqua in un recipiente se ci metti una caraffa a 80°C e una a 20°C" rispondono "100°C". Se però agli stessi bambini viene posto il problema reale "come diventa l' acqua se mescolo calda e fredda", essi rispondono "Tiepida". [1]

Il riferimento al concreto non basta! Serve anche...

Definiamo il problema...

A questo punto serve una buona definizione di problema.

Definiamo il problema...

A questo punto serve una buona definizione di problema.

• Duncker (1935):

Un problema sorge quando un essere vivente <u>ha</u> una meta ma non sa come <u>raggiungerla</u>.

Definiamo il problema...

A questo punto serve una buona definizione di problema.

• Duncker (1935):

Un problema sorge quando un essere vivente <u>ha</u> una meta ma non sa come <u>raggiungerla</u>.

es. (1°livello)

Sono le 16.30. Mi trovo in una città che non conosco, e devo raggiungere una certa strada (che non conosco) entro le 17.00 per un appuntamento.

Doppia motivazione

Ogni problema ha quindi una duplice motivazione:

- i. Raggiungere un obiettivo (innesca il problema);
- ii. Risolvere il problema.

Doppia motivazione

Ogni problema ha quindi una duplice motivazione:

- i. Raggiungere un obiettivo (innesca il problema);
- ii. Risolvere il problema.

es. (2° livello)

"Immagina la seguente situazione: sono le 16.30 e sei in una città che non conosci. Devi raggiungere una certa strada (che non conosci) avendo un appuntamento per le ore 17. Come puoi fare?"

Il problema di 2° livello

- In questo tipo di problema, l' attenzione è concentrata sui *modi* di raggiungere l' obiettivo pratico.
- E' presente solo la motivazione (ii): ma questo succede in tutti i problemi di tipo scolastico, (necessariamente eteroposti).
- Richiede maggiore capacità di astrazione rispetto al problema di 1° livello.
- Quale è la motivazione (i)?

Condividere gli obiettivi

• Spesso l' obiettivo di chi pone il problema non è (eventualmente) lo stesso di chi lo risolve.

es. (3° livello)

Per comprare 5 bottiglie di bibita ho speso 8 euro. Quanto costa una bottiglia?

Condividere gli obiettivi

• Spesso l' obiettivo di chi pone il problema non è (eventualmente) lo stesso di chi lo risolve.

es. (3° livello)

Per comprare 5 bottiglie di bibita ho speso 8 euro. Quanto costa una bottiglia?

Qual è l' obiettivo di chi pone il problema?

Qual è l' obiettivo di chi lo risolve?

Problema di 3° livello

L' obiettivo di chi pone il problema...

non è sapere quanto costa una bottiglia;

non è sapere come trovare il costo di una bottiglia ('chiedi al negoziante' o 'leggi il cartellino' non sarebbero ritenute risposte accettabili);

Problema di 3° livello

- L' obiettivo di chi pone il problema...
 - è esplicitare il nesso tra i dati e l' incognita.
- E' questo un obiettivo che **può non essere** condiviso dall' alunno perché richiede un livello di astrazione necessariamente alto.

Problema di 3° livello

- L' obiettivo di chi pone il problema...
 - è esplicitare il nesso tra i dati e l' incognita.
- E' questo un obiettivo che può non essere condiviso dall' alunno perché richiede un livello di astrazione necessariamente alto.
- Si possono quindi attivare motivazioni a raggiungere obiettivi alternativi: rispondere alla domanda, soddisfare l' insegnante ...

Cosa dicono i bambini...

- "per me problema è una scritta dove ci sono i numeri."
- "per me un problema è come una prova di capacità, che serve per riconoscere l' intelligenza del ragazzo o della ragazza."
- "per me un problema è una domanda da risolvere con un' operazione."
- "Mi fa venire in mente problema di una storietta corta dove finita la storia bisogna risolverla e quando non riesco a concentrarmi sul problema mi immagino sempre: ecco perché l' hanno chiamata problema."

Cosa dicono i bambini...

- "la parola problema mi fa venire in mente le operazioni perché quelli scolastici si devono eseguire con le operazioni."
- "Per me, un problema, è un compito difficile, che ogni maestra, lo detta ai propri alunni, per farli riflettere. Se ci impegnamo, lo risolviamo con facilità e chiarezza."
- "Il problema per me è bellino perché si possono fare le operazioni e poi ci sono i voti."
- "La parola problema mi fa venire in mente qualcosa che non ci sono bravo. Io quando faccio i problemi ho un po' paura perché non sono bravo."

Cosa dicono i bambini...

- "Fiorella a un problema. Il suo fratellino di due mesi di notte piange sempre e la sveglia. La mattina è stanca perché di notte non dorme."
- "Un babbo fuma e impuzzolentisce tutta la casa. I bambini e la moglie respirano aria cattiva. Come fare."
- "Catturare un bufalo."

Condividere gli obiettivi

 Nel porre un problema è quindi indispensabile aver ben chiaro l' obiettivo che si vuole attivare, e preoccuparsi di farlo condividere dal soggetto solutore.

es. l' aneddoto un certo John Von Neumann ...

- Ipotesi da verificare: i comportamenti "patologici" messi in atto dai bambini non sono dovuti a difficoltà a livello dei processi risolutivi, ma nel non condividere l' obiettivo di un problema.
- In questo senso, un problema di 2° livello, più facilmente condivisibile, dovrebbe risultare più "facile" di un problema di 3° livello.
- Test eseguito su 300 bambini di 2° e 3° elementare (ogni bambino risponde a un solo problema).

• Versione A:

Ogni volta che va a trovare i nipotini Elisa e Matteo, nonna Adele porta un sacchetto di caramelle di frutta e ne offre ai bambini, richiedendo però che essi prendano le caramelle senza guardare nel pacco. Oggi è arrivata con un sacchetto contenente 3 caramelle al gusto di arancia e 2 al gusto di limone.

Se Matteo prende la caramella per primo, è più facile che gli capiti al gusto di arancia o limone? Perché?

- Il contesto è concreto, ricco e familiare, vuole coinvolgere il bambino anche sul piano affettivo.
- Ma non si tratta di una simulazione di un problema reale... quindi è un problema di 3° livello.
- Il contesto concreto funge solo da contenitore di dati.

• Versione B:

Ci sono due sacchetti: nel primo ci sono 3 caramelle di menta e 2 all' arancio, nel secondo 2 caramelle di menta e 3 all' arancio.

A occhi chiusi, è più facile pescare una caramella di menta dal primo sacchetto o dal secondo? Perché?

Versione B:

Ci sono due sacchetti: nel primo ci sono 3 caramelle di menta e 2 all' arancio, nel secondo 2 caramelle di menta e 3 all' arancio.

A occhi chiusi, è più facile pescare una caramella di menta dal primo sacchetto o dal secondo? Perché?

Contesto povero, informazioni essenziali. Problema di 3° livello.

• Versione C:

Immagina di avere davanti a te due sacchetti: nel primo ci sono 3 caramelle di menta e 2 all' arancio, nel secondo 2 caramelle di menta e 3 all' arancio.

Tu puoi prendere a occhi chiusi una caramella da un solo sacchetto.

Da quale sacchetto preferisci pescare? Perché?

Ti piacciono di più le caramelle di menta o quelle all' arancio?

- Simulazione di una situazione problematica reale: *immagina*, preferisci,...
- Si tratta quindi di un problema di 2° livello.
- Contesto concreto, in cui il coinvolgimento emotivo non sia possibilmente causa di blocco, ma inneschi processi risolutivi corretti.

Indagine sul campo: i dati

cl. 2°	corrette	errate	ambigue	non risp.	totale
Α	14	33	3	0	50
В	13	31	5	1	50
С	35	11	3	1	50
cl. 3°					
Α	27	22	1	0	50
В	26	22	2	0	50
С	37	10	3	0	50

Alunni "bassi"	Α	В	С	totale
Seconde	1 (12)	0 (10)	10 (13)	11 (35)
Terze	2 (11)	2 (15)	4 (10)	8 (36)
Totale	3 (23)	2 (25)	14 (23)	19 (71)

Indagine sul campo: interpretazione dei dati

- Le versioni A e B sono equivalenti: il contesto concreto non serve se funge solo da contenitore!
- La versione C risulta quella con il maggior numero di risposte esatte: più che il contenuto, concrete devono essere le motivazioni!
- Gli alunni "bassi" sono fortemente aiutati dalla versione C perché per condividere un problema di 2° livello è richiesta minore capacità di astrazione che non la condivisione di un problema di 3° livello.

Indagine sul campo: interpretazione dei dati

• Nell' affrontare il problema di 3° livello è possibile che il bambino si ponga il problema alternativo "rispondere alla domanda", e ottenga così il giusto risultato.

Ma questo non avviene necessariamente, e soprattutto nei casi più deboli, in cui il bambino non è costretto a ricostruire la situazione problematica.

Tipiche sono allora le risposte "patologiche", tipo: combinazioni a caso di numeri, mancanza di controllo sui risultati, ...

Facciamo una prova...

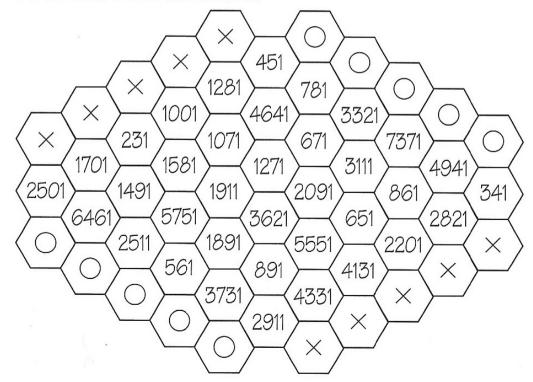
 Prova a scrivere un problema di matematica di 3° livello. L' argomento può essere qualunque; puoi attingere dalla tua esperienza personale.

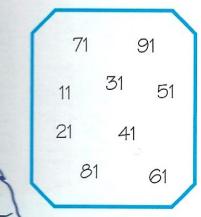
Facciamo una prova...

- Prova a scrivere un problema di matematica di 3° livello. L' argomento può essere qualunque; puoi attingere dalla tua esperienza personale.
- Ora prova a trarne una versione di 2° livello: vedi, non è così difficile! :)

Facciamo una prova...

- Prova a scrivere un problema di matematica di 3° livello. L' argomento può essere qualunque; puoi attingere dalla tua esperienza personale.
- Ora prova a trarne una versione di 2° livello: vedi, non è così difficile! :)
- Problemi di scelta: un cammino da percorrere, un viaggio da affrontare,...


In quale delle seguenti situazioni preferisci il valore approssimato? Motiva la risposta.


Situazione	Numero	Numero approssimato
Alunni della 1ª G	26	30
Orario di un appuntamento	15 h 14 min 45 s	15 h 15 min
Misura della febbre	37,6 °C	38 °C
Popolazione terreste	6315092531	6300000000
Costo di un vestito	24 euro	20 euro
Peso corporeo	48,307 kg	48 kg
Quantità di farina per una ricetta	0,6 kg	1 kg
Costo di un biglietto	36 euro	40 euro
Distanza tra due città	32,750 km	33 km
Età	11,5 anni	12 anni

61 - 21 = 1281 | 51 | 781 | 3321 | 7371 | 0 | | 271 | 3111 | 4941 | 341 | | 320 | 4331 | × | | 331 | × | | 341 | × | | 352 | 4331 | × | | 353 | 2911 | × | | 4331 | × | | 5551 | × | | 5551 | × | | 691 | 4331 | × | | 755 | × | | 757 |

Gioco 1. IL SENTIERO DELLA MOLTIPLICAZIONE

- 1. I giocatori scelgono il loro simbolo (X o O).
- 2. Il giocatore che inizia sceglie due numeri diversi dal riquadro a sinistra, e ne calcola il prodotto con la calcolatrice (guarda l'esempio qui a sinistra). Mette il suo simbolo sulla casella del risultato nel tabellone a destra. Il turno passa all'altro giocatore.
- 3 Se un giocatore ottiene come prodotto un numero la cui casella è già occupata, il turno ritorna all'altro giocatore.
- 4. Vince chi riesce per primo a completare un percorso da un bordo all'altro del tabellone.

I solidi

Laboratorio 1

- a) Gli oggetti che vedi in queste due pagine sono stati raggruppati in quattro gruppi diversi di solidi.
 - Secondo te con quale criterio sono stati raggruppati?
- b) Prova a raggruppare nuovamente gli oggetti sulla base della loro forma. Specifica quali caratteristiche comuni posseggono i solidi che appartengono allo stesso gruppo.

boratorio 2

a classificazione molto usata suddivide le figure solide in due gruppi principali: poliedri, solidi le cui facce sono tutte dei poligoni;

solidi di rotazione, ovvero i solidi ottenuti per rotazione di una figura piana attorno a una retta, detta asse di rotazione.


wa tra gli oggetti di queste pagine alcuni oggetti che appartengono a ciascuno dei due gruppi. qualche oggetto che non è né un solido di rotazione né un poliedro?

boratorio 3

gli scopi di questo e del prossimo capitolo, ovvero imparare a calcolare l'area della superfie il volume di alcuni tipi di solidi, è molto comoda un'altra classificazione, nella quale tra le re solide si distinguono due gruppi:

solidi a due basi che hanno due facce congruenti e parallele, e una superficie laterale; solidi a punta che hanno una sola base e un vertice al quale convergono tutti i punti della base. mina le definizioni delle pagine 84 e 85 e trova tra questi oggetti dei solidi a due basi e dei di a punta.

qualche oggetto che non è né un solido a due basi né un solido a punta?

L'approccio tradizionale alle difficoltà in matematica si basa su un'idea semplice: lo studente manifesta difficoltà in quanto possiede conoscenze insufficienti.

- Quindi, seguono le modalità di intervento:
 - la correzione di errori;
 - la ripetizione degli argomenti;
 - l' addestramento a tecniche opportune;
- Funzionano?

- In [2] viene fatto l' esempio dei medici di ospedale che applicano il metodo della cura "buona di per sé", ... e i morti sono "cattivi pazienti". Esagerato?
- Ma come si spiega che, pur senza conoscenze, i bambini affrontano e risolvono problemi anche complessi in contesti extra scolastici?

- Fattori metacognitivi:
 - Conoscenza del proprio patrimonio cognitivo
 - Processi di controllo
 - Un intervento sui fattori metacognitivi ... in quali casi è applicabile nel sostegno?

- Le convinzioni:
 - Sono il risultato dell' interpretazione della realtà da parte del discente, in base al principio costruttivista dell' apprendimento.
- Si formano pertanto veri e propri sistemi di convinzioni organizzaati in strutture stabili.

- Convinzioni specifiche (misconceptions):
 - es. il prodotto di due numeri è sempre maggiore di ciascuno; un quadrato con i lati non paralleli al lato del foglio è un rombo; ...
 - Gli studenti sono consapevoli di questo?

- Convinzioni specifiche (misconceptions):
 - es. il prodotto di due numeri è sempre maggiore di ciascuno; un quadrato con i lati non paralleli al lato del foglio è un rombo; ...
 - Gli studenti sono consapevoli di questo?
 - E gli insegnanti?
 - L' allievo sbaglia non perché applica in modo scorretto procedure corrette, ma perché applica in modo corretto interpretazioni scorrette.

• Convinzioni generali (sulla matematica):

es.

- solo pochi fortunati riescono in matematica quindi l' impegno conta fino a un certo punto;
- le regole matematiche non si possono capire, solo imparare;
- per fare gli esercizi la teoria non serve;
- Un problema lungo è più difficile di un problema corto;

Convinzioni personali (su di sé)

es.

- "Io ero convinta di non capirci nulla, e con questa convinzione, non cercavo di sforzarmi a capire e migliorare, e pensavo che gli altri, siccome arrivavano alla soluzione prima di me, fossero dei geni, quindi aspettavo che fossero sempre loro a darmi la soluzione." [Valeria, 3°media]
- Quanto pesano i comportamenti dell' insegnante?
- Quale informazione è contenuta nella frase "John è stupido" ?

- Fattori affettivi:
 - Emozioni negative: paura, ansia, frustrazione, rabbia;
 - Emozioni positive: orgoglio, eccitazione.

• Gli atteggiamenti:

es. la matematica è utile ...

- Un insegnante può fare molto per favorire un buon atteggiamento verso la matematica:
 - offrire occasioni di reale problem-solving;
 - dare importanza alla verbalizzazione;
 - discutere le decisioni metacognitive;
 - utilizzare gli errori per scardinare le convinzioni;
 - riconoscere quale è l' esperienza matematica che scatena una particolare emozione;
 - porsi come modello di comportamento cognitivo, metacognitivo ed affettivo.

Conclusione

- L' attività di problem solving deve partire dal sentire un problema come tale.
- Non si può pensare di risolvere comportamenti "patologici" in matematica solo con la ripetizione di esercizi già fatti, ma considerare altri fattori come la metacognizione, le convinzioni, gli aspetti affettivi.

Bibliografia incompleta

- [1] R. Zan "*Problemi e convinzioni*" Pitagora, Bologna (1998).
- [2] N.Postman, C.Weingartner "L' insegnamento come attività sovversiva" La Nuova Italia, Firenze (1973).
- [3] C.Bertinetto, A. Metiainen, J. Paasonen, E. Voutilainen "Contaci!" Zanichelli, Bologna (2012).