ADMISSIONS AND REQUIREMENTS

There are two different ways to enrol in the PhD programme:

Method A - Through a competitive selection process based on the applicant's CV, academic transcripts, a written research project (to be submitted during the application stage) and an interview (which can take place also through networking free-ware such as Skype). Each year about 10-15 students are granted a PhD position within DCCM and the most successful ones are awarded a scholarship for 3 years. There may be special fellowships specifically awarded to students who graduated abroad.

For detailed and updated information, including deadlines, grants and fees, please refer to the URL:
http://dottorato.unipi.it/index.php/en/

Method B - Candidates who are supported by international scholarships (e.g. Marie Curie action of the EC, non-EC funds) may be directly enrolled. For more information, please address the PhD secretary directly at: dottorato@dcci.unipi.it

Programme Coordinator
Prof. Lorenzo Di Bari
lorenzo.dibari@unipi.it

General Information
dottorato@dcci.unipi.it

Website
http://www.dcci.unipi.it/dottorato_dcci/dottorato_scienze-chimiche-materiiali.html
PROGRAMME OVERVIEW

The three-year PhD programme aims at training young graduates in Chemistry and Materials Science (DSCM) with a focus on both molecular aspects and nanosystems. The aim is to develop research projects in the most modern and advanced fields including theoretical and computational chemistry, thermodynamics and thermal analysis, NMR and optical spectroscopies, organic and inorganic synthesis, biologically active compounds, catalysis, nano and bio-materials, polymer sciences, sensors, cultural heritage, environment and health. In order to achieve this, students have access to both top-level education and to a network of collaborations within the academic and industrial communities. All the courses offered by DSCM are in English and are taught by outstanding researchers, working in the field of Chemistry and Materials Science.

OBJECTIVES

The main objective of the PhD programme is “learning through research”. Challenging scientific goals allows us to use our knowledge to develop innovative solutions and strategies, to use and devise advanced instruments. The PhD student will acquire a deep and robust knowledge of the theoretical and experimental methodologies of computational and advanced instrumental techniques for the study of molecular systems and nanomaterials. The PhD student will develop the capacity to carry out research independently whilst working together in a team. International networking will be well promoted, through the numerous collaborations with DCCI, and thanks to short or extended periods abroad.

COME AND THRIVE

• Work in a lively scientific environment
• Establish a network of contacts and partnerships worldwide
• Gain an in-depth and insightful education
• Enjoy a positive and friendly work environment
• Benefit from a multicultural experience